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Abstract

Automated planning technologies show great promise
of reducing operations costs by automating the space-
craft mission planning process. However, one of the
bottlenecks is acquiring spacecraft operations knowl-
edge from operations personnel and expressing it in a
plan model. One of the primary design goals of the AS-
PEN planning language is to eliminate the knowledge
acquisition bottleneck by making it easy for operations
personnel to build plan models themselves.

The ASPEN language is designed to be used by domain
experts that have no knowledge of automated plan-
ning technology. Spacecraft operations knowledge can
be expressed in ways that are natural to operations
personnel. The language is intended to be intuitive
and require almost no knowledge of how the planning
algorithm works. ASPEN itself provides hooks for inter-
facing with existing planning support tools, and has
a mixed-initiative planning mode and GUI that al-
low operations personnel to easily edit automatically
generated plans if desired. A non-AI expert with an
operations background was able to construct ASPEN
models that are scheduled for use on two missions,
EO-1 and UFO-1.

Introduction
Automated planning/scheduling technologies show
great promise of reducing operations costs by automat-
ing the spacecraft mission planning process. The
Artificial Intelligence Group at the Jet Propulsion
Laboratory has been developing a system called AS-
PEN (Automated Scheduling and Planning Environ-
ment). ASPEN (Fukunaga et al. 1997) is a mod-
ular, reconfigurable application framework based on
AI techniques (e.g., (Allen, Hendler, ~: Tate 1990;
Fox & Zweben 1994)), that can support a variety
of planning and scheduling applications (similar to
(Smith, Lassila, & Becket 1996)). The primary 
plication area for ASPEN is the spacecraft operations
domain.

Planning and scheduling spacecraft operations in-
volves generating a sequence of low-level spacecraft
commands from a set of high-level science and en-
gineering goals. The ASPEN planning model encodes
spacecraft operability constraints, flight rules, and op-
erations procedures to allow for automated genera-
tion of spacecraft sequences. By automating the com-
mand sequence generation process and by encapsulat-
ing the operations-specific knowledge, ASPEN will en-
able spacecraft to be commanded by much smaller op-
erations teams and thereby reduce operations costs.

The ASPEN planning model encodes knowledge that
is in the domain of mission operations personnel. Ide-
ally, it is these experts who should build the planning
models. This removes a major knowledge acquisition
step, which is often costly and a source of errors. The
operational constraints, flight rules, and other planning
knowledge often change up to launch, and to a lesser
extent even through operations. The mission planners
and operations personnel are in the best position to
know when and how this knowledge is changing, and
keep the ASPEN models consistent with that knowledge.

The ASPEN modeling language is designed to allow
operations personnel, who generally do not have an AI
planning background, to develop ASPEN models quickly
and easily. The ASPEN modeling language was de-
signed to be intuitive, require almost no knowledge
of AI planning technology, and to naturally express
planning knowledge for common aspects of spacecraft
operations.

The remainder of this paper describes the ASPEN
modeling language and how it facilitates expression of
planning knowledge for spacecraft operations. We first
describe the modeling language and demonstrate how
it can express planning knowledge for common aspects
of spacecraft operations. We then discuss how ASPEN
supports modular design of models and how it allows
the modeler to be ignorant of the underlying planning
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engine. Finally, we describe an ASPEN model that is
scheduled to generate activity plans and command se-
quences for the EO-1 mission. This model was devel-
oped by a JPL engineer with a background in space-
craft operations (WOPEX/Poseidon and Mars Observer)
but not in AI planning.

Overview of the ASPEN Language
In order to build an ASPEN model, a domain expert
needs to know a few things about the modeling lan-
guage~ but can remain almost completely ignorant of
the ASPEN planning engine. The engine can be treated
as a black box that produces a plan that is consistent
with the model and achieves the goals from the initial
state of the spacecraft, both of which are specified in
the initial state file.

The ’modeler needs to know the planning language,
the elements that comprise a plan, and what it means
for a plan to be consistent with the model. The main
ASPEN plan elements are activities, resources, states,
temporal constraints and reservations. All of these ele-
ments are specified in a plan model expressed in the
ASPEN planning language. The model stores all of
the domain-specific information. The following sub-
sections describe each of these elements, how they are
specified in the model, and what it means for a plan
to be consistent with a given specification.

Activities
Activities are the plan elements that change the state
of the world when executed. An activity type has a
type name and zero or more parameters. An activity
type can have several instantiations in the plan and
initial state file (similar to types and objects of those
types in C or C++). Parameters are the "local vari-
ables" of an activity.

All activities have a start and end timepoint and a
duration. Activities in a plan can overlap, and there
can be times when no activities are scheduled. A tem-
poral constraint enforces a temporal relation between
activity timepoints. Temporal constraints can only ex-
ist between activities; they cannot exist between any
other plan elements.

Timepoints are expressed as intervals in the model,
but are narrowed to a fixed time in the plan. The en-
gine can reason about the interval when deciding how
to schedule the activity, but this flexibility does not
need to be maintained in the plan itself. That is, ASPEN
has a committed plan representation (e.g., (Smith 1994;
Zweben et al. 1994)). This is consistent with how
most operations personnel think about planning. They
know what the intervals are for each activity, but
narrow those to a specific time on the mission plan.

Activity catbed_heater_on {
reservation =

cat_htr_sv change_to "on";

Activity fire_engine
constraint =

starts_after end_of catbed_htr_on
by [1800, infinity];

reservation = engine_sv change_to "firing";

Figure 1: A Science Observation Activity

This committed approach is also consistent with the
spacecraft operations environment. Traditional space-
craft execution engines cannot deal with intervals; they
must be given fixed times at which to execute each ac-
tivity. Planning support systems, with which ASPEN
may need to communicate, usually require fixed times
rather than intervals. (Communication with external
planning support systems will be discussed later).

Activities are the source of all constraints in the
model. There are four kinds of constraints that ac-
tivities can impose on other plan elements: temporal
constraints, functional dependencies, resource reserva-
tions, and state reservations.

Temporal Constraints

A temporal constraint is a temporal relation between
a source activity type and a target activity type. The
relation must be satisfied by every pair of activity in-
stances of those types in the plan. The ASPEN lan-
guage defines six temporal relations: starts_before,
starts_after, ends_before, ends_after, contains, and con-
tained by.

The first four relations are between a timepoint
(start or end) of the source activity and a timepoint 
the target activity. The last two relations, "contains"
and "contained_by" are defined on the start and end
timepoints of the activities. The relation "A contains
B" is equivalent to a "A starts_before start of B" and
an "A ends_after end of B" relation. The relation "A
contained_by B" relation is defined symmetrically.

A temporal relation can be modified by an optional
interval. For example, the temporal relation in Fig-
ure 1 has an interval of [1800,infinity]. This means
the engine burn activity must occur at least 1800 sec-
onds (half an hour) after the catbed_heater_on activ-
ity. That is, the engine should not be fired unless the
catbed has been heating for at least half an hour. This
is a common constraint on most spacecraft. If a tem-
poral interval is specified as [0,0], the timepoints must
coincide exactly.
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Reserve 2 units

Reserve 2 units

Reserve I unit

Figure 2: Resource Timeline with Overlapping Reser-
vations

Resources and Resource Reservations

ASPEN has two kinds of resources: aggregate and
atomic. An aggregate resource has some finite capac-
ity, measured in number of units. Its units can be allo-
cated among multiple activities at any time. Aggregate
resources can be either depletable or non-depletable.
Depletable resources are consumed by the activities
that use them, whereas non-depletable resources are
only removed from availability during the activity and
become available again when the activity terminates.
An atomic resource can be used by only a single user
(activity) at a time, and is not consumed by the user.

Activities state their resource requirements via re-
source reservations. A reservation for an aggregate re-
source specifies the resource and the number of units.
An atomic resource reservation only specifies the re-
source, since the number of units is always one.

The plan generated by ASPEN must satisfy the re-
source reservations of all the activity instances in the
plan. Each resource is represented in the plan as a
timeline. The timeline is segmented into units, each
with a start and end timepoint. The timepoints corre-
spond to the start and end timepoints of the activity to
which the resource was allocated. If there are multiple
overlapping reservations for the resource, the timeline
is split into units for each segment of the overlap (reser-
vation A, reservation A and B, reservation B) as shown
in Figure 2. Both aggregate and atomic resources are
represented this way. Atomic resources are essentially
an aggregate resource with a capacity of one. In a valid
plan, the reservations for all segments must not exceed
the resource capacity.

Parameter string ALI_Mode {

domain = ("data","idle","standby","off");

};
Parameter int warprange {

domain = [1,40960];

};

Figure 3: Parameter Type Definitions

State Timelines and Reservations

State timelines represent the evolution of some aspect
of the world (spacecraft) over time. A state timeline
has an enumerated set of discrete state values that it
can take on, and a list of legal state transitions. The
timeline must have exactly one value at any given time.

Activities can impose two kinds of state reservations:
a "must_be" reservation that requires the state have
a specific value for the duration of the activity, and
a "change_to" reservation that changes the state to
a specific value at the beginning of the activity. As
with resources, the timeline is divided into segments
according to the timepoints of the "change_to" reser-
vations, and each segment has one value. If there are
multiple change_to reservations for a segment, one of
them is satisfied and the others are marked as conflicts.
The must_be reservations do not segment the timeline.
They are merely checked against the value of the time-
line over the relevant time period, and are marked as
satisfied if the timeline is in the specified value for the
entire period, and marked as a conflict otherwise.

Parameters and Functional Dependencies

An activity can have zero or more parameters. The pa-
rameters are essentially local variables of the activity
and modify the behavior of its constraints. This al-
lows the user to define one parameterized activity type
rather than several types for each parameter combina-
tion.

Each parameter has a type. The ASPEN primitive
types are integer, string, real, and list. ASPEN also
supports user-defined types that are constructed from
the primitive types. Some parameter type definitions
from the EO-1 model are shown in Figure 3.

Parameters can modify an activity’s temporal con-
straints, resource reservations, and state reservations.
They are used as variables in the resource and state
reservations to specify the number of units or state
value as shown in lines 15 and 21 of Figure 4.

Temporal constraints have an optional "with" clause
that specifies the parameter values of the relation’s tar-
get activity. The specified value can either be a con-
stant or the value of one of the source activity’s pa-
rameters. Lines 9 through 11 of Figure 4 show a tem-
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I Activity Take_Image {
2 int image_size;
3
4 Duration = [1,60];
5 Dependencies =
6 image_size <- size_from_dur(duration);
7
8 Constraint =

9 starts_after end of SAD_Changer
I0 with (new_mode<-"fixed") by [100,300],

11 ends_before start of SAD_Changer
12 with ("tracking"->new_mode) by [16,16],
13 ...;
14 reservations =
15 use warp_storage image_size;
16 };
17
18 // change mode of solar array drive (SAD)
19 Activity SAD_Changer {
20 SAD_Mode new_mode;
21 reservations = SAD change_to new_mode;
22 };

Figure 4: Activity with Parameter Dependencies

int size_from_dur (int duration) 
return 1000 * duration; /* 1K per sec */

};

Figure 5: ’C’ code for size_2rom_dur

poral constraint between a Take/mage activity and
a SAD_Changer activity. The with clause constrains
the new_mode parameter of the SAD_Changer activity
to have the value "fixed." The "with" constraints are
called functional dependencies since they define one pa-
rameter value to be a function of some other parameter
value. In this case, the function is simple equivalence.

More complex functional dependencies are possible
among the parameters of an activity. A parameter can
be defined as a user-defined function of one or more
other parameters of the same activity. This is useful for
defining constraints that would otherwise be difficult
or impossible to express in ASPEN. It is also useful for
linking with existing planning support systems, as will
be discussed later.

The dependency functions are written in ’C’ and
linked into the ASPEN runtime image. Line 6 of Fig-
ure 4 shows a functional dependency that computes the
size of an image as a function of the image duration.
The function definition is shown in Figure 5. Other
programming languages can be supported with foreign
function interfaces from ’C’.

Modeling Common Mission Operations
The ASPEN modeling language is designed to be used
by domain experts, such as mission operations person-
nel, who generally are not familiar with AI planning
techniques or the ASPEN planning algorithms.

The ASPEN planning concepts map onto many of the
mission planning concepts with which operations per-
sonnel are already familiar. This is intended to make
it easier for them to build ASPEN models, since they
do not have to learn many new concepts. Further-
more, the ASPEN language makes it easy to express
that knowledge. Activities, states, and resources are
distinct planning elements, which as we will discuss
later is how operations personnel refer to them. Like-
wise, temporal constraints, resource reservations, and
state reservations are distinct entities, and obey clear
semantics. States and resources are declared using sim-
ple terms familiar to operations personnel. Finally,
many aspects of spacecraft activity planning can be
expressed in a straightforward and natural manner in
ASPEN.

ASPEN also facilitates modular design of plan mod-
els, and requires no knowledge of the underlying plan
engine. These issues will be discussed in the two follow-
ing sections. The remainder of this section describes
the ASPEN language in more detail, and demonstrates
how ASPEN can model many common aspects of space-
craft activity planning in a straightforward and intu-
itive manner.

Resources

The driving constraints on most spacecraft missions
are the resources, since most spacecraft are resource
limited. A large portion of the planning problem is
scheduling activities in a way that avoids resource
conflicts. Typical spacecraft resources are propel-
lant (fuel), power, data storage, and battery capacity.
These are aggregate resources: they have several units
that can be allocated among multiple users (activities)
at any time. The ability to reason about aggregate re-
sources is a primary requirement of the mission activity
planning domain. Spacecraft devices that can only be
used for one activity at a time, such as a science cam-
era, are also resources. These are atomic resources:
they have a capacity of one and can be used by at
most one activity at a time.

Operations personnel are concerned with certain in-
formation about resources for planning purposes. They
need to know the resource capacities, usage profiles,
and availability profiles. Each resource has some max-
imum capacity, and may have a non-zero minimum ca-
pacity. For example, batteries loose their effectiveness
below a certain discharge level, and so have a effective
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Resource Propellant {

Resource Power {

Resource Data_Store {

Resource Battery {

Resource camera_A {
Resource camera_B {

type = depletable;
capacity = 1500; //grams}
type = non_depletable;
capacity = 300; //watts}
type = depletable;
capacity = 3,000;//KB}
type = depletable;
capacity = 15; //Ah
min_capacity = 7;}
type = atomic; }
type = atomic; }

Figure 6: ASPEN Resource Definitions

minimum capacity that is non-zero . Minimum lev-
els may also be assigned for operational or spacecraft
safety reasons (e.g., do not use let the propellant level
drop below ten kilograms during this mission phase).

Resources usage and availability profiles are very im-
portant for planning. Operations personnel need to
know how each activity will consume resources over
time, and whether the availability of that resource is
constant or varies with respect to time or some aspect
of the spacecraft state. For example, propellant us-
age is roughly linear in the duration of a burn. Solar
power availability depends on the spacecraft attitude
and position with respect to the Sun.

Let us consider how this resource knowledge would
be represented in ASPEN. First, each resource is de-
clared with a simple expression that specifies its name,
type (depletable, non-depletable, or atomic), and min-
imum and maximum capacities (if aggregate). These
declarations are very straightforward, as can be seen
in Figure 6. Data storage and battery capacity are
depletable but renewable resources (batteries can be
recharged and data can be deleted after it is down-
linked). Fuel is depletable but non-renewable, and
power is a non-depletable resource. This representa-
tion is sufficient to express all of the spacecraft re-
sources we have encountered.

Resource usage profiles depend on the activities that
use them. Each activity in ASPEN has an optional re-
source reservation. This states the resource name and
the number of units that the activity will use. For
atomic resources, the number of units is omitted (it is
unnecessary, since there is only one unit).

The number of units can be a constant, or a user-
defined function of the activity’s parameters, including
the implied parameters of start time, end time, and
duration. For example, a thruster burn uses a number
of fuel units that is linear in the duration of the burn.

ASPEN assumes that all the resource units are con-
sumed at the beginning of the activity, even if the ac-
tual usage varies over time. This is a conservative as-

sumption that simplifies the ASPEN engine. It is con-
servative in that it permits a subset of the schedules
that would be legal if it did more detailed resource
profiling. More detailed profiling would allow some ac-
tivities to overlap that would not be allowed to overlap
with simpler modeling. We are considering more de-
tailed resource profiling for future versions of ASPEN.

At present, ASPEN can only represent constant re-
source availability profiles. That is, the resource has
some constant capacity, and does not vary with time
or other state variables. This is sufficient for most re-
sources, so it is not a strong limitation. For the few
places where it is necessary to have varying availability
profiles, this can be implemented using activities that
create or allocate the resource at appropriate times.
We are considering extensions to ASPEN that would
allow resource capacity to be modeled directly as a
function of state or time. This extension would make
the model clearer, but not extend the representational
power of ASPEN.

States

Operations personnel must know about the spacecraft
states relevant for planning purposes, and how they
interact with the spacecraft activities. They are pri-
marily concerned with states that are preconditions
of activities or are affected by those activities. Other
states do not affect planning and do not need to be
considered.

Typical states that operations personnel are con-
cerned with are device states, and global spacecraft
state. Device states are things like "valve open or
closed" and "engine is off, firing, or warming up." De-
vices are often limited to certain state transitions. For
example, the engine can go from "off" to "warming up"
to "on", but not from "off" to "on" directly. There are
often duration constraints on the device states as well.
For example, the engine must warm up for at least
thirty minutes before firing.

Global spacecraft states are things like spacecraft at-
titude and vibrational level. They do not correspond
to any one device, and can be affected by several activ-
ities. Global states are often preconditions of activities
as well (e.g., the vibrational level must be low in order
to take a picture).

This state information is represented in ASPEN as
state timelines. State timelines in ASPEN describe the
evolution over time of some aspect of the spacecraft.
Each state timeline is specified in the model by a sim-
ple declaration that specifies its name, states, and le-
gal state transitions. The allowable state transitions
are indicated using the transitions keyword with a
forward arrow (--~), a bi-directional arrow (4+), or 
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State_Variable camera_health {
states = ("ok", "degraded", "broken") 

default_state = "ok";
transitions = all;

};

State_Variable camera_mode {
states = ("on", "off", "warming_up");
default_state = "on";
transit ions= ("off"<->"warming_up",

"warming_up"->"on", "on"->"off") 

};

State_Variable vibration {
states = ("low", "high" );
transitions = all;

};

Figure 7: Common Spacecraft States

Activity instr_on {

constraints =
ends_before start_of instr_off by [10,3600];

reservation = instr_sv change_to "on";
};

Activity instr_off {
reservation = instr_sv change_to "off";

};

Figure 8: Representing State Duration Constraints

Activity Type:
Title:
Description:

Used in following activities: subactivity of
Implements following activities: parent of

COMMANDING SCENARIO

Parameters:
activity parameters

Overview:
English description of activity

Commands:
Relative time Activity/Cmd Parameters

PRECONDITIONS
i.e., must_be state reservations

CONSTRAINTS/RESOURCES
i.e., temporal constraints and
resource reservations

POST CONDITIONS
i.e., change_to state reservations

NOTES:

Figure 9: Template for an Activity Type.

the all keyword. If the transitions are not specified,
ASPEN assumes that all transitions are legal. The ini-
tial value for a state timeline can be specified by the op-
tional default_state keyword. Declarations for some
common spacecraft states are shown in Figure 7.

Constraints on the duration that the spacecraft can
be in a given state are represented in ASPEN by tempo-
ral constraints on the activities that change the state.
An activity that changes a state variable to one of its
duration-limited values must be followed within a given
duration by an activity that changes it to a different
value. This is represented by temporal constraints on
the first activity, as shown in Figure 8. These con-
straints say that the once the instrument enters the
"on" state, it must stay in that for at least 10 seconds
and no more than an hour.

We are considering extensions to ASPEN that would
allow state duration constraints to be specified within
the state variable declaration. This will not extend the
expressiveness of ASPEN, but may make the modeling
a little more intuitive.

Activities

Activities are events or actions that the spacecraft per-
forms. Operations personnel begin by defining all the
spacecraft activities using an "activity type template"
similar to the one shown in Figure 9. The template
describes the operational constraints, resources and ef-
fects of the activity. It also specifies the low-level com-
mand sequence that implements the activity.

The main components of the template are the ac-
tivity name and parameters, the preconditions for per-
forming the activity (spacecraft state and resources),
the effect of performing the activity, and the low-level
command sequence that implements the activity. The
activity type is used in the mission plan for human
consumption, and the sequence is used for command-
ing the spacecraft.

The operations personnel in conjunction with the
subsystem engineers determine what the relevant ac-
tivities are for each subsystem and what their oper-
ational constraints are. This information is captured
in activity type definitions and used by the operations
personnel for planning purposes.
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Activity Type:
Title:
Description:

Science_Obs_Act
Science Observation
Take image of science target

Used in following parent activities: N/A
Implements following activities: N/A

COMMANDING SCENARIO

Parameters:
target_attitude
camera_filter

Overview:
Select filter
Take image

Commands:
Relative time Activity/Cmd
0T00:00;00 FILTER_SLCT
0T00:00:10 TAKE_IMAGE

Parameters
camera_filter

PRECONDITIONS
a) pointing camera at target_attitude
b) low vibration

CONSTRAINTS/RESOURCES
a) 10 KB of data storage
b) 15 Watts of power

POST CONDITIONS
a) Image is in data storage
b) filter is selected

NOTES: None

Figure 10: Science Observation Activity as Operations
Personnel Would Define It.

An ASPEN activity definition is very similar concep-
tually to the activity type definitions familiar to oper-
ations personnel. Consider how a science observation
activity would be defined in ASPEN and with an activity
type template. The activity type definition is shown
in Figure 10, and the corresponding ASPEN definition
is shown in Figure 11.

An ASPEN activity type has a name, zero or more
parameters, a duration, an optional sequence expan-
sion, and optional lists of temporal constraints, re-
source reservations, and state reservations. These all
correspond to parts of the mission operations activity
type definition. The preconditions and postconditions
of the operations activity type correspond to must_be
and change_to state reservations in the ASPEN activity
definition. The constraints section corresponds to the
temporal constraints in ASPEN, The operations activ-
ity type does not have an explicit duration, but the

1 Activity Science_0bs_Act {
2
3
4
5
6
7
8
9
10
11
12
13
14
i5 //
16 II
t7 };

//parameters
attitude targetattitude;
filter_id filter;

reservations =
// preconditions
attitude_sv must_be target_attitude,
vibration_sv must_be low,

// resources
use data_storage I0, //KB
use power 15; // Watts

(temporal) constraints: none
Constraint ~ ... ;

Figure 11: Science Observation Activity as Defined by
ASPEN.

duration is implicit in the command sequence. The
other elements of the operations activity type corre-
spond to obvious parts of the ASPEN activity type def-
inition. These elements are discussed in more detail in
the following subsections.

Sequence Expansion. An activity type template
includes a section for defining the sequence that im-
plements the activity. ASPEN has a similar capability.
Each activity has an optional command keyword that
specifies the sequence for that activity. This directive
is used in a post-processing phase to convert the plan
into a sequence that can be executed on the spacecraft.

Duration. The duration of an activity can be spec-
ified as a range Iv, y] or a constant duration. If not
specified, it defaults to [1, infinity]. The duration can
be extracted from the command sequence in the oper-
ations activity type definition.

Reservations. A resource reservation allocates a re-
source to an activity for the duration of that activity.
State reservations either change the value of a state
variable or reserve a state value for the duration of
an activity. State changes correspond to effects of ac-
tivities as defined in the activity type template, and
state reservations correspond to preconditions. A state
change is represented in ASPEN by a "change_to" state
reservation, and a state requirement is represented by a
"must_be" reservation. See Lines 8 and 9 of Figure 11,
respectively.

Temporal Constraints. These specify temporal re-
lations that must hold between pairs of activities. The
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Activity ScienceObs {
subact ivit ies =

select_filter a with (filter_id<-"A"),
take_image b,

select_filter c with (filter_id<-"B"),
take_image d

where
a starts_before end_of b by [0,0],
b starts_before end_of c by [0,0],
c starts_before end_of d by [0,0];

};

Figure 12: Activity with subactivities.

ASPEN modeling philosophy urges the use of reserva-
tions instead of temporal constraints wherever possible
in order to increase the modularity and readability of
the model. However, it is necessary and appropriate
to use temporal relations to represent temporal con-
straints on states.

One class of situations where this occurs is when an
activity requires that some state has been established
for some duration. The requirement that the catbed
heater be on for at least half an hour before firing the
main engine is a good example of this, and has been
discussed.

Another class is states that have some constraint on
their duration. For example, some instruments should
not be left on too long; other devices should be left
on for a minimum duration before being turned off
to avoid damage. An effective way to do this is to
place temporal constraints between the activities that
change the state, as was discussed in the section on
states.

Subactivities. ASPEN allows activities to have sub-
activities. These correspond to the "used in the follow-
ing activities" and "implements following activities"
sections in the activity type template. Subactivities
are useful for representing the steps of high-level ac-
tivities that are always performed the same way. For
example, suppose each science observation consists of
selecting filter A, taking an image with filter A, select-
ing filter B, and taking an image with filter B. This
would be defined as a "science_observation’parent ac-
tivity with three subactivities as shown in Figure 12.
The parent activity declaration can include temporal
relations among the subactivities. In the example of
Figure 12, they force the four subactivities to be per-
formed in the correct order.

It is often convenient to think of activities in this
way, and it can simplify the planning search. Subac-
tivities are implemented as regular activities, except
that ASPEN maintains a link between the subactivities

Activity science_obs {

target t;

dependencies =

score <- f(t,start_time);
};

Figure 13: Activity Preference Score

and their parent. This allows the planning engine to
treat parents and subactivities as a block where ap-
propriate. For example, it can schedule the parent and
its subactivities all at once, or move them as a unit
to resolve conflicts. This is often more efficient than
reasoning about each activity in isolation.

Optimization Criteria

Spacecraft mission are almost always oversubscribed.
There are more science requests and other objectives
than can possibly be met. It is up to the operations
personnel to devise an operations plan that achieves
as many goals as possible (weighted by priority). The
operations personnel must optimize the plan to eke out
every last bit of performance.

ASPEN can optimize plans, removing some of the
optimization burden from the operators. ASPEN can-
not optimize plans as well as experienced operators,
though. ASPEN has a mixed-initiative mode and a GUI
that facilitates hand-optimization, if desired.

In order for ASPEN to optimize a plan, the optimiza-
tion criteria must be specified in the model. There
are two ways to specify preference criteria in ASPEN.

The first is to define a score function within an ac-
tivity. This is a user-defined function that computes
a preference score for the activity from the activity
parameters. An example is shown in Figure 13. The
user-defined function (f in the example) is an arbitrary
’C’ function.

The second way is to use the ASPEN preference lan-
guage. This allows the user to score a partial plan as a
function of activity parameters (including start time,
end time, and duration), resource utilization, number
of state transitions, or number of activity instances of
a particular type. The functions are limited to a pre-
defined set, namely a linear function or an exponential
function. Examples are shown in Figure 14.

Both of these methods allow preferences to be stated
in strictly domain-specific terms. The user does not
need to know anything about the planning engine.
The preference language is sufficient to express com-
mon spacecraft optimization criteria. Typical criteria
are maximizing activity instances (e.g., the number of
science observations), optimizing activity parameters
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II maximize number science observations
prefer linearly more science_obs activities;

// maximize propellant remaining at end of plan
prefer exponentially more propellant at end;

// minimize number of times camera A
// changes state
prefer linearly fewer cam_a_svunits;

Figure 14: Preference Examples

(e.g., take the most interesting observations), and min-
imizing resource utilization.

External Interfaces

A practical mission planning system must interface
with other mission-planning support systems. Typical
systems perform computations that cannot be easily
done within a planner. Typical support systems com-
pute trajectories, attitudes needed to take science ob-
servations as a function of spacecraft position and how
the target is moving, determine when Earth tracking
stations can communicate with the spacecraft, etc.

ASPEN provides two interfaces to such tools. One is
the initial state file, and the other is dependency func-
tions. The initial state file is what defines the initial
schedule. This file typically contains the initial state of
the spacecraft and activities (goals) that the user wants
to be achieved. External systems often have a hand in
defining ASPEN’s goals or computing resource levels.
Systems that can reason about orbital information are
often needed to compute science targets, mosaics, and
trajectories, which can then be communicated to AS-
PEN as activity parameters in the initial state file. The
initial state file is also a good way to inform ASPEN of
events such as communication passes and occultation
periods (when the spacecraft is in shadow, for Earth
orbiters). These are often determined by systems or
procedures external to ASPEN.

The other interface is through parameter depen-
dency functions. As discussed earlier, an activity pa-
rameter can be a user-defined function of one or more
of the other parameters. The user-defined function can
be any ’C’ function, and can therefore call external
support systems or simulators.

For example, the duration of a slew (change of space-
craft attitude) depends on the start and end attitudes,
the start time of the slew, and the turn rate. This
function can be quite complex. Spacecraft are usually
subject to pointing exclusion constraints-for example,
they cannot point instruments and radiators too near
the sun and other bright objects. The spacecraft may
have to "walk around" these exclusion zones in order to

Activity slew {
attitude from;

attitude to;
real turn_rate;

dependencies =
duration<-slew_dur(from,to,

start_time,
turn_rate);

};

in functions.c:

int slew_dur (char* from, char* to,
int start_time,
float turn_rate)

{ ... };

Figure 15: Dependency Function

reach the target. The zones change with time, since the
spacecraft is moving with respect to the Sun and other
bright bodies (e.g., Jupiter). An example is shown 
Figure 15.

Modularity

The ASPEN language facilitates modular design of mod-
els. This is important, since it allows experts in dif-
ferent subsystems to create their part of the model
without having to coordinate strongly with other ex-
perts. This reduces the knowledge acquisition bottle-
neck. It also localizes the knowledge for each subsys-
tem, which should improve maintenance and verifica-
tion of the model.

What makes this modularity possible is ASPEN’s phi-
losophy that activities should interact through states
and resources. The activities can be ignorant of each
other, which allows activities to be added, deleted, and
modified without having to change the other activi-
ties. Of course, if changes are made to the states or
resources, then all the activities will have to be modi-
fied accordingly.

To see how activities interact through states and re-
sources, consider a science observation activity that
needs to be pointing at Jupiter, have low spacecraft
vibration, have access to the camera, and uses three
megabytes of data storage. The non-modular way to
enforce these conditions is to impose temporal relations
with activities that establish those conditions. That
is, the observation activity would require a "point to
Jupiter" and "turn camera on" activity some time be-
fore it, and disallow during the observation all other
activities that use the camera.
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Resource and state reservations enforce these condi-
tions in a modular way without using temporal con-
straints. The ASPEN planning engine will ensure that
these states and resource requirements are met. It finds
activities that establish the desired states, and inserts
them at appropriate places in the plan.

Heuristics
ASPEN has facilities for instrumenting every choice
point in the search with heuristics. However, heuris-
tics are not required for most models (all of the ASPEN

models developed so far use only a standard set of six
domain-independent heuristics). This independence is
made possible by the ASPEN engine design, which com-
pensates for weak search knowledge by searching more.
ASPEN uses an iterative repair search, in which each
repair operation is relatively inexpensive computation-
ally.

The ASPEN design is predicated on this principle of
fast, inexpensive search. This principle is reflected
in many design decisions, but a large portion of the
speed gains come from ASPEN’s committed approach to
planning. Although the plan model represents activity
timepoints as intervals, those timepoints are narrowed
to fixed times when the activities are added to the
schedule. This simplifies the plan representation, con-
flict detection algorithms, and plan modification oper-
ations, and enables faster plan operations (the design
goal is to average 100 plan operations per second.)

The benefit of faster search is that ASPEN models
do not require domain-specific heuristics. It is much
easier to develop plan models when heuristics are not
required. First, heuristics require that the modeler
have some understanding of the planning algorithm.
Mission operations personnel generally do not have
this understanding, nor should they have to. Sec-
ond, domain-specific heuristics often break modular-
ity. They must know what activities and goals are in
the model, and how they interact during the planning
search. When the heuristics need to be very strong and
finely tuned in order to achieve acceptable planning
performance, developing the heuristics can become the
most difficult part of the modeling task (Smith, Rajan,

Muscettola 1997).

Future Extensions to ASPEN
The ASPEN modeling language is expressive and intu-
itive, but there are some modeling tasks that could
be made even more intuitive by extending the model-
ing language. The extensions discussed here generally
do not increase the expressiveness of ASPEN, they just
allow things to be represented in a way that more nat-
urally reflects how operations personnel perceive them.

ASPEN presently presumes that activities consume
all of their aggregate resource reservations at the be-
ginning of the activity. The actual resource usage pro-
files are often linear or decaying exponential functions
over the duration of the activity. In the future, ASPEN
may have such resource usage profiles, but for now it
is a known limitation. This extension would increase
the expressiveness of ASPEN.

Other possible extensions that have already been
discussed are allowing states to have duration, and
computing resource availability as a function of states.
These extensions will not extend the representational
capability of ASPEN, since all of these things can be
represented in the current version of ASPEN by using
activities in appropriate ways, but they may make the
modeling language more intuitive.

Another problem that is difficult to express in AS-
PEN, or any other planning languages we are familiar
with, is power interaction between the solar array and
the battery. This interaction arises in EO-1 and many
other spacecraft. When the EO-1 satellite is occulted
by the Earth, activities in the plan which use solar
array power must instead use battery power. The re-
verse is true when EO-1 is in direct sunlight. There
are also periods where both solar array and batteries
are used for power due to partial illumination of the
solar array. Combining these effects with the complex
charging and discharging cycles of the batteries creates
a difficult problem to model.

One way to represent this problem, which ASPEN
does not directly support, would be to define a "power"
resource whose availability profile (capacity) is deter-
mined by a battery resource and a solar-power re-
source. The availability of the battery and solar-power
resources can be determined as a function of the space-
craft position and attitude with respect to the sun as
determined by a state timeline. The availability of the
combined power resource would be a function of the
battery and solar-power resource availability1

This does not increase the expressiveness of Aspen,
since this can can be represented with parameter de-
pendency functions in the activities that use power.
Each activity would have one function to compute the
solar power consumed and one for the battery power.

This representation would require adding a resource
availability function to resources, and allowing re-
sources to reserve other resources. The first would
allow the battery and solar-power availabilities to be

1Simply adding the availabilities may not be sufficient,
since solar and battery power often have non-linear inter-
actions. The battery is recharged by solar power, and the
battery compensates for drops in solar power output. This
connection creates some complex interactions between the
two.
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computed from the sun-position timeline; the second
would allow the combined power resource to reserve
some combination of battery and solar power to sat-
isfy reservations on the combined power resource.

For all of these extensions, some care must be taken
before adding them. They all involve allowing states
and resources to be the source of various constraints.
This might confuse users by cluttering ASPEN’s clean
semantic, which only allows constraints to come from
Activities. On the other hand, users may find this more
intuitive and not perceive it as cluttering at all. Fur-
ther study is needed to see if these will in fact improve
the ease of modeling.

The EO1 Model

We now provide a description of the ASPEN planning
model for the EO-1 mission. This model was devel-
oped by a one of us [Sherwood] who has a strong mis-
sion operations background, but no background in AI
or automated planing. This description is intended to
show that planning models are easy to express in AS-
PEN, and that they can be developed by operations
personnel with no AI background.

EO-1 is an Earth imaging satellite to be launched
in May 1999. It is part of the New Millennium Pro-
gram of technology validation missions. The NASA
Goddard Space Flight Center is responsible for project
management. The purpose of EO-1 is to validate new
technologies that can be used on future Landsat class
Earth remote sensing missions. In fact, EO-1 will be
flying in formation one minute behind Landsat-7, with
the goal of imaging as many of the same targets as
possible. EO-1 will be using the Landsat 7 daily scene
list as an input file of potential EO-1 targets.

The science payload on EO-1 is an advanced multi-
spectral imaging device. Mission operations on EO-1
consist of managing spacecraft operability constraints
such as power, thermal, pointing, buffers, consumables,
and telecommunications. EO-1 science goals involve
imaging of specific targets within particular observa-
tion parameters. Managing EO-1 spacecraft downlink
is particularly difficult because the amount of data gen-
erated by the imaging device is quite large and ground
contacts are limited. In addition, because science tar-
gets for EO-1 are based on short-term cloud predic-
tions, schedules must be generated daily.

The main activity in EO-1 operations is the Ad-
vanced Land Imager (ALI) data take. The ALl instru-
ment contains six separate detectors that output data
simultaneously. One image takes a total of 24 seconds
and consumes about 19 gigabits of data on the solid
state recorder (WARP). Because the capacity of the
WARP is only 40 Gbits, it is important to plan the

data takes and downlinks to maximize the amount of
data returned. Due to a limited amount of available
downlink time, only four data takes per day can be
performed. Data takes can be prioritized based on the
following parameters:

¯ Cloud cover over the region to be imaged

¯ Sun angle at the region to be imaged

¯ Ability to return the data before overflowing the
WARP recorder

¯ Images coinciding with Landsat 7 images

¯ Imaging of scientifically interesting areas

Each EO-1 data take has several conditions that
must be satisfied before and after the data take oc-
curs. These conditions are listed below:

Before:

¯ Change the ACS mode to science

¯ Change the solar array to a fixed orientation

¯ Open the ALI aperture

¯ Change the data rate to high rate mode

After:

¯ Close the ALI aperture

¯ Take one second of calibration data

¯ Change the ACS, solar array, and data rate modes
back to the previous values

Each of these conditions is modeled as temporal con-
straints in the ALI data take activity. The data take
activity itself is only a 24-second activity. The con-
straints on the activity span a period of five minutes
before and one minute after the bounds of the activity.
The constraints on the activity could have been mod-
eled as subactivities. The reason we chose to model
these activities as constraints is because of their tight
temporal constraints. The data take activity breaks
down into 14 separate activities as listed in Table 1.

The ALI must be calibrated by viewing the sun or
the moon regularly. The sun calibration involves point-
ing at the sun and changing the aperture filter sev-
eral times. The moon calibration points at the lunar
limb and pans across the moon using each of the de-
tectors. Similar to the data take activities, the cal-
ibrations involve several constraints. The calibration
activities and constraints are listed in Table 2.

EO-1 communication activities are modeled as fol-
lows:
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4
5
6
7
8
9

State_variable ALI_sv {
states = ("data", "standby", "idle", "off" ) 
transitions = ( "standby"->"data",

"data"->" st andby",
"idle"->" st andby",
"standby"->" idle",
"off "->" idle",

"idle->off") 
default_state = "idle";

};

State_variable aperture_sv {
states = ( "open", "closed");
transitions = ( "open"->"closed",

"closed"->"open" ) 

10 default_state = "closed" ;
ii };

Non-Depletable Depletable

ALI Battery
S-band Receiver Warp Storage
Transponders Propellant
solar array
ACDSE
Warp
Processor
Bus_1773
Cat_bed_heater
WFF
DSN

Table 3:EO-1 Resources

Figure 16: State Variable Examples

ALI_data_take
ALI_user_data
ALI_changer
SAD_changer
engdata_user
ACS_user
cloud _cover_changer

aperture_changer
ALI_user_standby
SAD_user
aperture_user
engdata_changer
ACS_changer
sun_angle_changer

Table 1:EO-1 Science Activities

1. An input file gives the times at which the ground
station is in view of the satellite.

2. The in view times are converted into a state variable
with the value ’inview’ or ’outview.’

3. The planner chooses communication links during
these in view times.

4. The communication link is broken down into uplinks
(if required) and downlinks.

The EO-1 model also includes initialization activities

ALI_sun_calibration
slew_to_sun
aper_test_changer
ALI_moon_calibration
moon_eal_ms_pan
slew_to_moon
ramp_up_pitch_slew
ramp_down_pitch_slew
roll_to_next _position

Table 2:EO-1 Calibration Activities

for power, propellant, and memory. These activities
are used to keep track of consumable resources from
the previous planning period.

The command key-word is used for activities that rep-
resent an EO-1 spacecraft command. When the com-
mand keyword is included in the activity definition,
along with the command name, the spacecraft com-
mand output file will include a time tagged command
for that activity.

The EO-1 spacecraft resources are modeled as either
depletable or non-depletable. It was not necessary to
model every physical device on EO-1 because many
devices consumed a constant power and did not inter-
act with any spacecraft activities. The power of these
devices is included in the power_init activity. The re-
sources that are modeled are listed in Table 3.

The EO-1 ASPEN model has ten different state vari-
ables, which are listed in Table 4. Most of these state
variables are used to represent the state of a spacecraft
resource. The states are used in activities that require
a resource to be in a particular state. These require-
ments are specified in the reservations of the activity.
For example, the EO-1 data take activity requires the
WARP state variable to be in record mode during the
period of imaging. This requirement ensures that the
data is being recorded during the imaging operation.
Activities are defined that either change or use a par-
ticular state of a state variable. These activities usu-
ally contain a command keyword that corresponds to
an EO-1 spacecraft command.

Creating the EO-1 Model

The modeling language has been designed such that it
can model a physical spacecraft system directly. It is
a descriptive language that allows an engineer to di-
rectly represent the physical spacecraft information in
the model. In fact, the EO-1 model was created by one
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Variable States
ALI_sv data, standby, idle, off
SAD_sv off, tracking, fixed
aperture_sv open, closed
aperture_test_sv small, med, large, blank
engdata_sv high, low
ACS_sv nadir, low_jitter, standby, safe,

orbit_adjust, WARP_sv off, idle,
record, playback

Cloud_Cover_sv low, medAow, med, med_high,
high, none

Sun_Angle_sv low, med, high, none
WFF_inview_sv in, out

Table 4:EO-1 State Variables

of us (Sherwood) who had no knowledge of the software
or its algorithms and procedures. He successfully cre-
ated the model by simply taking the EO-I spacecraft
information and putting it into the modeling language
syntax.

After building the EO-1 model, Sherwood built a
model for another mission, called UFO-1. The UFO-1
model is comparable in complexity to EO-1, and will
be generating all the command sequences for operating
UFO-1 beginning October 1999. The modeling effort
for both of these models is summarized in Table 5.

Although the UFO-1 model is larger than the EO-
1 model, it took only a third as much effort to build.
The modeler (Sherwood) attributes this improvement
to increased familiarity with the ASPEN language after
having built the EO-1 model. It would be interesting
to see whether this trend holds for other modelers and
missions.

The modeling language is flexible and allows for
different ways of representing the same information.
Therefore, there is no one correct model for a given
spacecraft. The EO-1 model is constrained to have
certain state and resource variables as determined by
the mission, but, on the other hand, there are different
ways of representing constraints among activities.

End-to-End Planning System

The goal of this EO-1 work is to produce an automated
on-board planning system for spacecraft commanding
of the EO-1 satellite. The system will be validated
after launch on the ground. As a ground based planner,
the inputs to ASPEN include:

* Landsat-7 cloud cover and sun angle predictions

. Current power, propellant, and memory levels

¯ Sun, moon, and sky calibration requests

¯ Ground station view files

¯ Maneuver requests

Once ASPEN is delivered to the EO-1 project, there
will only be minor changes made to the model to inte-
grate ASPEN into the existing operations. We plan to
automate the loading of the input files such as cloud
cover and sun angle predictions into ASPEN, and link
the output schedule of ASPEN directly to the exist-
ing EO-1 software. In fact, the creation of the input
files can be invoked from external calls from the AS-
PEN GUI. With ASPEN linked directly to its input files
through the GUI, the EO-1 planning process will be
seamless and efficient.

The output of the ground based validation of the
planner will be a text list of time tagged commands
that will be translated into binary spacecraft com-
mands by the ground system load generation utility.
This utility is already built into the EO-1 ground sys-
tem.

The on-board planning system will require upload of
the ground station view files and maneuver requests.
The cloud cover could be obtained by using the ALI sci-
ence instrument to examine the clouds before a scene.
After the image is taken, the cloud data would be an-
alyzed to determine if the scene should be saved and
downlinked. Clouded scenes would be erased from the
WARP and a new scene would be planned to take its
place.

The EO-1 Model in Action

Generating EO-1 mission operations schedules is a fast
process. Given a set of EO-1 requests, ASPEN will gen-
erate a conflict-free schedule within the order of a few
minutes for lengthy schedules, and within seconds for
simpler schedules. For example, for 162 EO-1 activi-
ties, it takes ASPEN 3.53 seconds (on a SUN Ultra-2)
to produce a conflict-free schedule. There are no EO-1
schedules that take more than a minute to schedule,
but with other spacecraft models with more activities
and lengthier schedules, we have seen a maximum of
five minutes to produce a conflict-free schedule.

In addition to having the activity requests specified
in advance, the user can make changes to the sched-
ule from the GUI as needed. For example, the user
could add an ALI_data_take activity. If this caused
conflicts in the schedule, then ASPEN would resolve the
conflicts. This whole process takes seconds to execute.
For example, with the EO-1 model, if we add three
ALI_data_take activities in the GUI (randomly placed),
this causes 34 conflicts. Resolving all conflicts, and
producing a conflict-free schedule takes 1.54 seconds
(on a SUN Ultra-2). This means that it is solving ap-
proximately 17 conflicts per second. (Adding just one
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Model Activities
Model Effort State Vars Activity Types Resources in Plan
EO-1 3 weeks 10 38 14 172
UFO-1 1 week 18 79 14 159

Table 5: Modeling Effort

data-take activity causes a large number of conflicts
because of the constraints between activities and the
states required by different activities).

Currently, activities can be given a particular score,
and high-level preferences (such as resource max us-
age) can be indicated which also determine scores for
activities. The generated schedule is then given a score
based on the activities’ scores. Using this score, the
user can then choose one generated schedule over an-
other. We are presently working on an algorithm that
will automatically optimize schedules.

Related Work
Plan-It II

The Plan-It II planner (Eggemeyer 1997; Eggemeyer
et al. 1997) has been used for mission activity plan-
ning on a number of JPL missions. It has many of
the same concepts as ASPEN, but was not intended for
use by non-AI experts. While there have been numer-
ous significant deployments for actual flight projects
(e.g., Galileo, Mars Pathfinder, Deep Space 1), these
were all developed by Plan-It II experts, not generic
mission operations personnel. The syntax is built on
top of Lisp, so it is helpful to have at least a basic
understanding of Lisp.

Planit-II requires the user to provide domain-specific
scheduling algorithms in Lisp. This generally requires
some familiarity with Lisp and AI planning techniques.
The scheduling methods are expected to use primitives
from the Plan-It engine for detecting and resolving con-
flicts. This requires knowledge of the underlying plan-
ning system.

HSTS

The HSTS (Muscettola 1994) planner is scheduled 
generate plans for NASA’s DS-1 spacecraft for a pe-
riod of one week in October 1998 (Muscettola et al.
1997). The plans will be generated onboard the space-
craft. Like ASPEN, HSTS reasons about metric time
and aggregate resources, and its modeling language
is clearly sufficient for expressing spacecraft activity
planning knowledge.

The HSTS language has a Lisp-like syntax and does
not distinguish among activities, states, and resources.
HSTS represents all of these elements as a single type

called a token. This makes for a clean planning seman-
tic, but does not map as well onto the way in which
operations personnel think about mission activity plan-
ning.

In order to achieve reasonable planning speed for
DS1, the plan model required detailed heuristics. De-
veloping and fine-tuning these heuristics required sig-
nificant effort and an intimate knowledge of the HSTS
planner(Smith, Rajan,& Muscettola 1997).

Conclusion
The goal of the ASPEN modeling language is to make
it easier for non-AI experts to encode mission activity
planning knowledge. Having domain experts build the
planing models is important for eliminating the knowl-
edge acquisition bottleneck and for increasing the ac-
curacy and maintainability of the model.

ASPEN is intended to allow operations personnel to
express planning knowledge naturally and intuitively,
without requiring knowledge of the underlying plan-
ning algorithms. ASPEN also facilitates modular de-
sign, which allows subsystem experts to create different
parts of the model.

ASPEN planning models have been developed by op-
erations personnel for two spacecraft, EO-1 and UFO-
1, and are scheduled for use on those missions.
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