
Restart Scheduling for Genetic Algorithms

Alex S. Fukunaga

Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Dr., Mail Stop 126-347, Pasadena, CA 91109-8099,

alex.fukunaga@jpl.nasa.gov

Abstract. In order to escape from local optima, it is standard prac-
tice to periodically restart a genetic algorithm according to some restart
criteria/policy. This paper addresses the issue of finding a good restart
strategy in the context of resource-bounded optimization scenarios, in
which the goal is to generate the best possible solution given a fixed
amount of time. We propose the use of a restart scheduling strategy
which generates a static restart strategies with optimal expected utility,
based on a database of past performance of the algorithm on a class of
problem instances. We show that the performance of static restart sched-
ules generated by the approach can be competitive to that of a commonly
used dynamic restart strategy based on detection of lack of progress.

1 Introduction

It is well-known that genetic algorithms (GAs) often converge to local op-
tima before discovering a globally optimal solution. Much research has focused
on the problem of preventing premature convergence, including various nich-
ing/speciation/mating neighborhood models (c.f. [4, 6, 3, 2, 5]). However, even
when mechanisms for preventing premature convergence are implemented, ex-
tended runs of GAs still reach a point of significantly diminishing marginal
return, i.e., convergence. Furthermore, for most real-world problems, it is not
possible to know whether a GA has found the global optimum, or whether it
has become stuck at a local optimum (there are some exceptional cases when a
bound on the optimum can be computed).

Thus, it is standard practice to periodically restart GAs according to some
restart criteria/policy. However, to date, the subject of restart policies for GAs
has been neglected. A common technique is to apply some metric of progress or
convergence, and to terminate the current run and restart with a new seed when
some threshold is reached (typically when no progress has been made for a long
time, or when convergence is detected using some other metric).

In this paper, we address the issue of finding a good restart strategy in the
context of resource-bounded optimization scenarios, in which the goal is to gen-
erate the best possible solution given a fixed amount of time. We first define a
framework for resource-bounded optimization, and describe a restart scheduling
approach which uses performance data from previous runs of the algorithm on
similar problems. We experimentally evaluate the restart scheduling approach
by comparing its performance to that of a restart strategy based on performance



improvement probability bound on a genetic algorithm for the traveling sales-
person problem (TSP). The paper concludes with a review of related work and
a discussion of our results.

2 Restart Strategies for Resource-Bounded Optimization

We define the problem of resource-bounded optimization as follows: Let A be an
optimization algorithm, and d be a problem instance (an objective function). Let
T be a resource usage limit for A. In this paper, we assume that T is measured
in a number of discrete “steps”, or objective function evaluations – we assume
that all objective function evaluations take approximately the same amount of
time. Let U(A, d, T ), the utility of the algorithm A on d given time T , be the
utility of the best solution found by the algorithm within the time bound. The
task of resource-bounded optimization is to maximize U (i.e., obtain the best
possible solution quality within a given time).

We assume that it does not matter when the maximal value of U is obtained
within the time window [0, T ]. This is a reasonable model of many real-world
optimization scenarios, in which an optimization expert is given a hard deadline
at which to present the best solution found. In this problem framework, the only
thing that matters is the utility of the best solution found within the deadline.
Metrics such as rate of improvement of the best-so-far solution, or convergence
of the population are irrelevant with respect to how an algorithm’s performance
is evaluated.

In many cases, particularly if T is large enough, it is possible to start a run
of A, terminate it after t1 steps, restart A and run for t1 steps, and repeat this
process n times, where

∑n
i=1 ti = T .

A restart strategy determines t1, ...tn, and can be either static or dynamic.
Static restart strategies determine t1, ...tn prior to running the algorithm. For
example, a strategy which allocates resources equally among n restarts is a static
strategy. Dynamic strategies, on the other hand, decide during runtime when a
restart should take place. For example, we could repeat the following until the
total number of steps taken is T : run A until a convergence criterion is met, then
restart.

In the remainder of this paper, we focus on an approach to generating good
static restart strategies based on performance data collected for previous runs
of the optimization algorithm on similar problems.

3 Optimizing a Restart Schedule Based on Past
Performance Data

If we assume that we are applying a GA to a class of resource-bounded optimiza-
tion problem instances where the members of the class are somewhat similar to
each other with respect to how a restart strategy performs on them, then a rea-
sonable approach to developing a restart schedule is to design a strategy which
has high expected utility for the class of problems.



We define a static restart schedule to be the set S = {t1, t2, ...tn}, where∑n
i=1 ti = T . Given an algorithm A and problem instance d, A is executed with

d as the input for ti steps, for each i, 1 ≤ i ≤ n. The best solution found among
all of the restarts is stored and returned as the result of the restart schedule
execution. The schedule is defined as a set, rather than a sequence, since the
order in which the elements are executed does not matter.

Let U(A, d, t) denote the random variable which determines the utility (best
objective function value found) when algorithm A is run for time t on prob-
lem instance d. Then, U(S, A, d, T ) the utility of a restart schedule is also a
random value related to those of the individual elements of the schedule by
U(S, A, d, T ) = max(U(A, d, t1), U(A, d, t2), ...U(A, d, tn)).

In order to maximize E[U(S,A, d, T )], we propose an approach which uses
algorithm performance data collected in previous applications of A to problems
similar to d (i.e., problems drawn from the same class of problems) to determine
the schedule S. We assume that “similarity” has been defined elsewhere, and
that classes of problems have been previously identified prior to application of
the restart scheduling algorithm.

When A is executed on an instance d, we output the quality of the best-so-far
solution at every q iterations in a performance database entry, DB(A, d, runID) =
{(q, u1), (2q, u2), (3q, u3), ...(mq, um)}, where runID is a tag which uniquely
identifies the run (e.g., the random seed). By collecting a set of such entries,
we collect a performance database which can serve as an empirical approxima-
tion of the distributions corresponding to the set of random variables UAd =
{U(A, d, q), U(A, d, 2q), ...U(A, d, mq)}. In principle, it is possible to try to ap-
proximate U(A, d, t) for some arbitrary t by interpolation. However, our current
scheduling algorithm (see below) only requires the random values in UAd. It is
also possible to combine data from runs on different problem instances in order
to approximations for U(A, t).

Figure 1 shows a sample performance database, based on a set of 5 indepen-
dent runs of algorithm A1 on problem instance i1 and 3 independent runs of
A1 on i2. From the database, we can compute, for example, that an approxima-
tion for the expected value of U(A1, i1, 30) is (2 + 2 + 2 + 2 + 3)/5 = 2.2, and
U(A1, 20) = 22/10 = 2.2.

We now have the infrastructure necessary to automatically synthesize a static
restart strategy that maximizes the expected utility U(A, T ), based on a perfor-
mance database.

Synthesize-restart-schedule (Figure 2) is a simple generate-and-test approach
for static restart optimization. 2. Given a schedule increment size constant pa-
rameter k, where T mod k = 0, our current implementation of GenerateNextSched-
ule simply enumerates all schedules {k, 2k, ...(T/k)k = T}, where all components
of the problem are chunks of time which are a multiple of k. For example, if
T = 75000, k = 25000 (i.e., total resource allocation is 100000 objective func-
tion evaluations, and the schedule elements are multiples of 25000 iterations),
the schedules which are generated and evaluated are S0={25000,25000,25000},
S1={25000,50000}, and S2={75000}. Each candidate schedule is evaluated by



D(A1, i1, 0) = {(10, 1), (20, 2), (30, 2), (40, 3)}
D(A1, i1, 1) = {(10, 1), (20, 1), (30, 2), (40, 3)}
D(A1, i1, 2) = {(10, 1), (20, 1), (30, 2), (40, 2)}
D(A1, i1, 3) = {(10, 1), (20, 1), (30, 2), (40, 2)}
D(A1, i1, 4) = {(10, 1), (20, 3), (30, 3), (40, 4)}
D(A1, i2, 0) = {(10, 2), (20, 2), (30, 2), (40, 2)}
D(A1, i2, 1) = {(10, 2), (20, 3), (30, 3), (40, 3)}
D(A1, i2, 2) = {(10, 1), (20, 3), (30, 3), (40, 3)}
D(A1, i2, 3) = {(10, 1), (20, 3), (30, 3), (40, 3)}
D(A1, i2, 4) = {(10, 1), (20, 3), (30, 3), (40, 3)}

Fig. 1. Sample performance database, based on a set of 5 independent runs of algorithm
A1 on problem instance i1and 5 runs of A1 on instance i2.

estimating its expected utility via resampling (with replacement) from the per-
formance database. It is important to note that evaluating a candidate schedule
by sampling the performance database is typically orders of magnitude less ex-
pensive than actually executing the schedule. Thus, the meta-level search is able
to evaluate thousands of candidate schedules per second on a workstation, and
is much more efficient than evaluating strategies by actually executing them.

Of course, as T/k grows, the number of candidate schedules grows expo-
nentially, so it eventually becomes infeasible to enumerate and evaluate every
single candidate schedule. Future work will focus on efficient heuristic search al-
gorithms for meta-level search. However, as shown below, the exhaustive search
algorithm is more than adequate for our current empirical studies.

Note that we have discussed restart schedule optimization from a utility the-
oretic point of view, i.e., maximizing expected utility of a schedule. In practice,
for optimization problems where the objective is to minimize an objective func-
tion (as in the following section), we simply treat the objective function as a
negative utility.

4 Experiments and Results

We evaluated the restart scheduling approach using a class of symmetric Trav-
eling Salesperson Problem (TSP) instances.

The TSP instances were generated by placing N = 32 cities on randomly
selected (x, y) coordinates (where x and y are floating point values between 0
and 1) on a 1.0 by 1.0 rectangle. The cost of traveling between two cities ci and
cj is the Euclidean distance between them, d(ci, cj).

The objective is to find a tour π (a permutation of the cities) with minimal
cost, Costπ =

∑n−1
i=1 d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1))

The problem representation used was a Gray-coded binary genome which
was interpreted as follows: The ith allele (substring) was an integer between 1



Synthesize-restart-schedule(PerfDB,NumSamples,T ,k)
bestSched = {}
bestUtility = −∞
Repeat

S=GenerateNextSchedule(T ,k)
/* estimate expected utility of S */
SumUtility = −∞
for i = 1 to NumSamples

TrialUtility = −∞
for each element tj in S

DBInst = ChooseRandomDBProbIndex
DBSeed = ChooseRandomDBSeedIndex
Uj = DBLookUp(PerfDB,A,DBInst,DBSeed,tj)
if Uj > bestConfTrial

TrialUtility = Uj

end
sumUtility = sumUtility + TrialUtility

end

US = sumUtility/NumSamples
if US > bestUtility

bestSched = S
bestUtility = US

Until some termination condition
Return bestSched

Fig. 2. Synthesize-restart-schedule: Returns a restart schedule with highest expected
utility.

and N , representing the ordering in the TSP tour for city i. Ties were broken
in left to right order. For example, the genome (3, 2, 1, 5, 3) for a 4-city TSP
problem means that City1 is visited third, City2 second, City3 first, City4 fifth,
City5 is fourth, and tour completes by returning to City3.

A standard, generational GA [6] was used. The crossover operator was single-
point crossover, and the mutation operator was single-bit flips.

Note that this is not a particularly good encoding of the TSP for a GA; nor are
the operators used by the GA tuned for the TSP. GA operators/representations
better tuned for the TSP have been studied by a number of researchers (c.f.
[10, 7]). However, our goal was to evaluate restart strategies (as opposed to
finding good solutions for the TSP), and we used the TSP as a testbed because
it is a well-known, convenient class of problems for which problem instances can
be easily generated, encoded, and rapidly evaluated.



4.1 Performance Database Generation

We generated a performance database as follows:
Ten random 32-city TSP instances were generated as described above.
Sixteen different configurations of the GA were generated, by selecting val-

ues for four control parameters (population size, crossover probability, mutation
probability, selection method), where:

– population ∈ {50, 100},
– Pr(Crossover) ∈ {0.25, 0.5} (probability of a one-point crossover).,
– Pr(Mutate) ∈ {0.01, 0.05} (probability of each bit being flipped), and
– SelectionMethod ∈ {roulette, tournament}.1

For each of the TSP instances, we executed each of the GA configurations
using 50 different random seeds. Each run was for 100000 iterations (objective
function evaluations), i.e., the number of generations was chosen so that the
population×NumGenerations = 100000. Every 10000 iterations, the length of
the shortest tour found so far by the current GA configuration for the current
TSP instance for the current random seed was stored in a file.

For each TSP instance, we found the lmax and lmin, the longest and shortest
tour lengths found (by all GA configurations and random seeds), and normalized
all of the performance database entries by rescaling each value to a range between
[0,1], according to the formula vrescaled = (voriginal − lmin)/(lmax − lmin).

4.2 The Effectiveness of Restart Schedules for Unseen Problems

Our first experiment sought to verify that the expected utilities of the restart
schedules were in fact correlated with the actual performance of the restart sched-
ules on unseen problems – otherwise, optimization of restart schedules based on
the performance database would not be very useful.

Using the performance database described in the subsection above, we exe-
cuted Synthesize-restart-schedule to generate restart schedules for the GA con-
figuration with population = 100, Pr(Cross) = 0.5, Pr(Mutate) = 0.05, and
Selection = roulette, where the resource allocation T was set to 150000 total it-
erations. The increment size constant used by GenerateNextSchedule was 10000.
This was repeated for NumSamples = 100 and NumSamples = 1000. The al-
gorithm was slightly modified to output all schedules which were enumerated as
well as their expected utilities.

A new random 32 city TSP instance was generated, and for each enumerated
schedule, we executed the schedule with the new TSP instance as the input 25
times, and the mean utility of the schedule on the new instance was computed.
In Figures 4 and 3, we plot the expected utility of each schedule against their
actual (mean) performance on the new TSP instance.

1 Roulette selection was implemented as in [6]. Tournament selection uses roulette
selection to pick two individuals, then picks the individual with higher fitness, i.e.,
it applies additional sampling bias for better individuals.



Figure 3 shows that for NumSamples = 1000, there is indeed a high linear
correlation between the expected utility of a schedule and its performance on the
new instance. There is a weaker correlation for NumSamples = 100 (Figure 4).
The schedule with best expected utility found for NumSamples = 100 was S =
{t1 = 40000, t2 = 40000, t3 = 40000, t4 = 10000, t5 = 10000, t6 = 10000, t7 =
10000}. The schedule with best expected utility found for NumSamples = 1000
was S = {t1 = 30000, t2 = 30000, t3 = 30000, t4 = 30000, t5 = 30000}. These
discrepancies are due to the fact that the estimates of expected utility of a
schedule depends on the depth of the sampling. It is important for NumSamples
to be high enough that the expected utilities for the candidate schedules are
accurately estimated.

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

Le
ng

th
 o

f S
ho

rt
es

t T
ou

r 
(m

ea
n 

of
 2

5 
ru

ns
)

Negative Expected Utility (normalized)

Fig. 3. Negative Expected utility of a restart schedule (smaller is better) vs. shortest
tour length (mean of 25 runs), for problem instance tsp-t-32-0. The restart schedules
were generated by Synthesize-restart-schedule, where NumSamples = 1000

4.3 Static Restart Scheduling vs. Dynamic Restart Strategies

We evaluated the relative effectiveness of the restart scheduling approach by
comparing its performance on a set of test TSP problem instances with that of
a dynamic restart strategy.

For each of the 16 GA configurations for which the performance database
had been created (see 4.1), we ran the Synthesize-restart-schedule algorithm to
generate a restart schedules for a resource bound of T = 200000 iterations. We
used NumSamples = 1000, k = 10000. Executing Synthesize-restart-schedule
only took a few seconds for each GA configuration.

Using these schedules, we executed each of the GA configurations on two new,
randomly generated 32 city TSP instances. 25 independent trials were executed.



5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

Le
ng

th
 o

f S
ho

rt
es

t T
ou

r 
(m

ea
n 

of
 2

5 
ru

ns
)

Negative Expected Utility (normalized)

Fig. 4. Negative Expected utility of a restart schedule (smaller is better) vs. shortest
tour length (mean of 25 runs), for problem instance tsp-t-32-0. The restart schedules
were generated by Synthesize-restart-schedule, where NumSamples = 100

The mean and standard deviation of the best (shortest) tour lengths for each of
the configurations for each of the problems are shown in Tables 1-3.

A commonly used dynamic restart strategy in practice is to restart a GA run
after no improvement has been found after some threshold number of objective
function calls, StopThresh. We compared static restart scheduling against this
dynamic strategy.

We varied StopThresh between 4000 and 64000, in increments of 4000. For
each value of StopThresh, we ran each GA configuration 25 times on each test
TSP instance. The mean and standard deviation of the performances for the
value of StopThresh which performed best for each GA configuration
and problem are shown in Tables 1-3. Thus, for each GA configuration and
problem instance, we are comparing the performance of the schedule generated
by Synthesize-restart-schedule against the dynamic strategy which performed
best.

Figure 5 shows the mean and standard deviation for each value of StopThresh
for a randomly generated TSP instances (mean of 100 runs). Figure 5 shows
significant variation in performance for the dynamic strategy as StopThresh is
changed. Note that the optimal value of StopThresh depends on the problem
instance, as well as the GA configuration – we found that among the StopThresh
we tried, values between between 32000 and 56000 generally yielded the best
performances.

Tables 1-3 show that for each of the 16 GA configurations and the test prob-
lem instances, the static restart scheduling approach is able to generate schedules
whose performance is competitive with the best, tuned dynamic restart strategy.

Similar results were obtained for three additional, new random TSP in-



5.5

6

6.5

7

7.5

8

8.5

0 10000 20000 30000 40000 50000 60000 70000

Le
ng

th
 o

f S
ho

rt
es

t T
ou

r

StopThresh (iterations)

"many-convergence-thresholds"

Fig. 5. Mean and Standard deviation (100 runs) of shortest tour length found vs.
StopThresh.

stances, but are not included due to space constraints.

5 Related Work

The problem of termination criteria for a genetic algorithm (GA) is closely
related to the problem of restart policies. A stop criterion determines the termi-
nation condition for a GA. Intuitively, a “good” termination criterion stops an
optimization algorithm run when an significant improvement can not be expected
according to the observed performance behavior of the current run. Surprisingly,
relatively little work has been done in the area of determining good termination
criteria.

Common termination criteria used in practice include:2

– Cost bound: stop when a solution with quality at least as good as a threshold
Cthresh was found

– Time bound: stop after a fixed run time or number of iterations
– Improvement probability bound: stop after no improvement had been found

after some threshold number of generations.
– Convergence bound: stop after the population seems to have converged. This

can be measured by phenotype-based metrics such as the standard devia-
tion of the fitnesses of the population, or by measuring the diversity in the
genomes based on sharing functions [6].

Recently, Hulin [9] proposed a loss minimization stop criterion which termi-
nates the GA run when the cost of additional computation exceeds the expected
2 The first three were identified by Hulin [9]



Problem population Pr(Cross) Pr(Mutate) Selection best static best dynamic

tsp-32-1 50 0.25 0.01 roulette 6.22703(0.457675) 6.2922(0.399801)
tsp-32-1 100 0.25 0.01 roulette 6.19613(0.522442) 6.43133(0.466828)
tsp-32-1 50 0.25 0.05 roulette 7.8229(0.631012) 8.0099(0.493834)
tsp-32-1 100 0.25 0.05 roulette 8.23017(0.740634 8.55337(0.437836)
tsp-32-1 50 0.5 0.01 roulette 6.30237(0.555965) 5.97833(0.422097)
tsp-32-1 100 0.5 0.01 roulette 6.25037(0.466949) 6.4511(0.366967)
tsp-32-1 50 0.5 0.05 roulette 7.84767(0.642956) 8.3059(0.468121)
tsp-32-1 100 0.5 0.05 roulette 8.31783(0.578251) 8.75057(0.554124)
tsp-32-1 50 0.25 0.01 tournament 5.49603(0.477722) 5.55043(0.335943)
tsp-32-1 100 0.25 0.01 tournament 5.22473(0.431969) 5.38883(0.407333)
tsp-32-1 50 0.25 0.05 tournament 7.1813(0.723369) 7.44867(0.451588)
tsp-32-1 100 0.25 0.05 tournament 7.36763(0.462157) 7.55813(0.516443)
tsp-32-1 50 0.5 0.01 tournament 5.43813(0.381509) 5.40433(0.409401)
tsp-32-1 100 0.5 0.01 tournament 5.2392(0.440509) 5.4483(0.402273)
tsp-32-1 50 0.5 0.05 tournament 7.24613(0.5631) 7.37287(0.409981)
tsp-32-1 100 0.5 0.05 tournament 7.2487(0.458588) 7.7404(0.312084)

Table 1. Shortest tour lengths found by restart schedules for problem instance tsp-32-1.
Mean and standard deviation (in parentheses) shown for 25 runs. Data for the sched-
ule with maximal expected utility static schedule, as well as the mean and standard
deviation for the dynamic schedule with the best StopThresh parameter value for the
problem instance and GA configuration are shown.

Problem population Pr(Cross) Pr(Mutate) Selection best static best dynamic

tsp-32-2 50 0.25 0.01 roulette 6.4891(0.460724) 6.46407(0.375901)
tsp-32-2 100 0.25 0.01 roulette 6.537(0.5541) 6.84553(0.429402)
tsp-32-2 50 0.25 0.05 roulette 8.3541(0.477071) 8.5762(0.449611)
tsp-32-2 100 0.25 0.05 roulette 8.4946(0.588569) 8.9746(0.507336)
tsp-32-2 50 0.5 0.01 roulette 6.41293(0.601407) 6.5119(0.443905)
tsp-32-2 100 0.5 0.01 roulette 6.57543(0.428749) 6.71707(0.338523)
tsp-32-2 50 0.5 0.05 roulette 8.48043(0.545569) 8.5873(0.443472)
tsp-32-2 100 0.5 0.05 roulette 8.81603(0.376364) 8.9811(0.617244)
tsp-32-2 50 0.25 0.01 tournament 6.0375(0.402551) 5.84723(0.308051)
tsp-32-2 100 0.25 0.01 tournament 5.69883(0.467829) 5.9716(0.365863)
tsp-32-2 50 0.25 0.05 tournament 7.82907(0.480873) 7.65477(0.508069)
tsp-32-2 100 0.25 0.05 tournament 8.01903(0.53193) 8.01567(0.451157)
tsp-32-2 50 0.5 0.01 tournament 5.766(0.32631) 5.78477(0.390074)
tsp-32-2 100 0.5 0.01 tournament 5.6374(0.380343) 5.91053(0.312927)
tsp-32-2 50 0.5 0.05 tournament 7.64027(0.646444) 7.84763(0.535034)
tsp-32-2 100 0.5 0.05 tournament 7.95973(0.435137) 8.06997(0.464582)

Table 2. Shortest tour lengths found by restart schedules for problem instance tsp-32-2.
Mean and standard deviation (in parentheses) shown for 25 runs. Data for the sched-
ule with maximal expected utility static schedule, as well as the mean and standard
deviation for the dynamic schedule with the best StopThresh parameter value for the
problem instance and GA configuration are shown.

Table 3. tsp-32-2



gain (i.e., when the marginal utility of continuing the run is expected to be
negative), and showed that the loss minimization criterion stopped significantly
earlier than the improvement probability bound criteria, while obtaining virtu-
ally the same quality solutions.

Note that the cost bound, time bound, and improvement probability bound
criteria, are algorithm independent, and can be applied as a stop criterion for any
iterative optimization algorithm (e.g., simulated annealing, greedy local search,
etc.). In contrast, the loss minimization approach exploits algorithm structure
(cost distributions in a GA population, although loss minimization criterion can
be similarly derived for other optimization algorithms.

Static restart scheduling is related to algorithm portfolios [8], which use sim-
ilar techniques to minimize the expected time to solve a satisficing (as opposed
to optimization) problem by combining runs of different algorithms. The major
differences between restart scheduling and algorithm portfolios arise from the
fact that while restart scheduling optimizes expected utility for optimization
problems, algorithm portfolios minimizes expected runtime for satisficing prob-
lems. Also, restart scheduling assumes a resource bound; algorithm portfolios
are assumed to execute until a solution is found.

6 Discussion/Conclusions

This paper proposed the use of a restart scheduling strategy which generates
schedules with optimal expected utility, based on a database of past performance
of the algorithm on a class of problem instances. We showed that the performance
of static restart schedules generated by the approach can be competitive to that
of a commonly used, tuned, dynamic restart strategy.

It is somewhat counterintuitive that a restart schedule which dictates a series
of algorithm restarts, completely oblivious to run-time metrics such as rate of
progress, convergence, etc. can be competitive with a strategy which is explicitly
designed restart when progress is not being made. We believe that one reason
why the dynamic strategy does not outperform a static schedule is that restart
decisions being made based only on local information about the current run,
using a progress metrics which monitors whether the current run is progressing
or not.

Our empirical results supports the argument that in the context of resource-
bounded optimization, the control strategy should explicitly seek to maximize
expected utility, instead of focusing solely on runtime progress metrics. It is
important to keep in mind that the ultimate purpose of optimization strategies is
to find high-quality solutions, not merely to make progress relative to (a possibly
poor) previously discovered solution. An interesting direction for future work is
to combine the schedule based and dynamic strategies. For example, we could
generate a static schedule, and also monitor individual runs so that if, after a
while, a run is not likely to find a better solution than a previous run in the
schedule, it is terminated.



When generating our static schedules, we exploit the knowledge that we
are solving numerous problem instances from a class of problems, while dynamic
strategies are problem class independent. It may seem that collecting the data for
a performance database could be quite expensive. However, our results indicate
that a relatively small database can be used to generate high quality restart
schedules. The performance database used in our experiments required 50 runs
each for 10 TSP instances, or 500 runs of 100000 iterations per performance
database entry for a single GA configuration. Note that this is no more than the
computational resources needed to tune a dynamic restart strategy for a single GA
configuration – for our dynamic strategy, we would need to try each candidate
value of StopThresh several times on numerous TSP instances to find the value
of StopThresh which yields the best average performance. It is interesting to
note that based on performance database entries for which the maximum number
of iterations was 100000, we were able to generate schedules for a resource bound
of 200000 iterations which were competitive with a dynamic strategy which was
tuned by comparing multiple StopThresh values at 200000 iterations.

An important area for future research is scaling the approach for much larger
resource bounds. As noted in Section 3, the meta-level search performed by
Synthesize-restart-schedule becomes exponentially more expensive as T/k, the
ratio of the resource bound to the schedule increment size, grows larger. Effi-
cient, non-exhaustive algorithms for meta-level schedule optimization need to be
developed in order to scale up the method significantly. In addition, evaluation of
a single candidate schedule could be sped up significantly if efficient, statistical
hypothesis ranking methods were used (c.f. [1]).

Our restart scheduling approach is algorithm independent, in that it can be
applied to generating a restart schedule for any optimization algorithm. Fur-
thermore, it is a straightforward extension to generate schedules which combine
multiple algorithms for resource-bounded optimization, much as algorithm port-
folios [8] combine multiple algorithms for satisficing algorithms. Currently, we
are investigating an extension to the approach which redefines a schedule to be
a set of pairs S = {(a1, t1), (a2, t2), ...(an, tn)}, where the a1, ..an denote differ-
ent algorithms (e.g., different GA configurations), and the t1, ..tn denote their
resource allocations (as in the restart schedules discussed in this paper). We be-
lieve that this will be effective when the class of problems from which instances
are drawn are diverse enough that differnet algorithms perform well on different
subsets of the problem distribution.

Acknowledgments

Portions of this research was performed by the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under contract with the National Aeronautics and
Space Administration, and was supported in part by the Center for Integrated
Space Microsystems (CISM). Thanks to Andre Stechert for helpful comments
on a draft of this paper.



References

1. S. Chien, J. Gratch, and M. Burl. On the efficient allocation of resources for hy-
pothesis evaluation: A statistical approach. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 17(7):652–665, 1995.

2. R.J. Collins and D.R. Jefferson. Selection in massively parallel genetic algorithms.
In Proc. International Conf. on Genetic Algorithms (ICGA), pages 249–256, 1991.

3. Y. Davidor, T. Yamada, and R. Nakano. The ECOlogical Framework II: Improv-
ing GA performance at virtually zero cost. In Proc. International Conf. on Genetic
Algorithms (ICGA), pages 171–176, 1993.

4. K. DeJong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan, Department of Computer and Communication
Sciences, Ann Arbor, Michigan, 1975.

5. L.J. Eshelman and J.D. Schaffer. Preventing premature convergence in genetic al-
gorithms by preventing incest. In Proc. International Conf. on Genetic Algorithms
(ICGA), pages 115–122, 1991.

6. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

7. A. Homaifar, S. Guan, and G.E. Liepins. A new approach on the traveling sales-
man problem by genetic algorithms. In Proc. International Conf. on Genetic Al-
gorithms (ICGA), pages 460–466, 1993.

8. B.A. Huberman, R.M. Lukose, and T. Hogg. An economics approach to hard
computational problems. Science, 275(5269):51–4, January 1997.

9. M. Hulin. An optimal stop criterion for genetic algorithms: a Bayesian approach.
In Proc. International Conf. on Genetic Algorithms (ICGA), pages 135–141, 1997.

10. T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, and C. Whitley. A com-
parison of genetic sequencing operators. In Proc. International Conf. on Genetic
Algorithms (ICGA), pages 69–76, 1991.

This article was processed using the LATEX macro package with LLNCS style


