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Abstract.
Randomization is a standard technique for improving the per-
formance of local search algorithms for constraint satisfac-
tion. However, it is well-known that local search algorithms
are sensitive to the noise values selected. We investigate the
use of an adaptive noise mechanism in an iterative repair-
based planner/scheduler for spacecraft operations. Prelimi-
nary results indicate that adaptive noise makes the use of ran-
domized repair moves safe and robust; that is, using adaptive
noise makes it possible to consistently achieve performance
comparable with the best tuned noise setting without the need
for manually tuning the noise parameter.

1 Introduction
Local search has been shown to be an effective algorithm for
solving many difficult constraint satisfaction and combina-
torial optimization problems. Deployed space applications
that apply local search include the Hubble scheduler (John-
ston and Miller 1994) and the on-board CASPER scheduler
in the EO-1 Autonomous Science Experiment (Chien et al.
2003).

The performance of local search in any given domain
usually depends greatly on the quality of domain-specific
heuristics that guide the behavior of the algorithm. Such
heuristics include procedures for selecting the next variable
to modify, as well as procedures for selecting new values to
apply to the selected variable.

Some local search heuristics are domain-independent, and
can be concisely expressed in abstract terms, such as the
ubiquitous greedy heuristic (make the change to the schedule
that results in the neighboring state with the best objective
function), or the well known min-conflicts heuristic (Minton
et al. 1992) for constraint satisfaction problems (select some
variable that is involved in a conflict, and assign a value to� such that the total number of conflicts remaining is mini-
mized).

However, because scheduling problems are generally
intractable (NP-hard), such elegant, domain-independent
heuristics can not always be guaranteed to yield adequate
performance. Domain-specific heuristics are usually the
product of an iterative process in which domain experts
and scheduling algorithm developers collaborate to improve

the default behavior of a scheduling algorithm by deriving
new domain-specific heuristics (this process is often initi-
ated when it is discovered that domain-independent heuris-
tics by themselves are failing to perform adequately in prac-
tice). Domain-specific heuristics for real-world scheduling
systems require a more complex, domain-dependent repre-
sentation. For example, in the ASPEN scheduler, it is possi-
ble to implement a heuristic that specifies that a certain type
of activity should be scheduled as soon as possible (because
it is known that this type of activity tends to generate many
constraints on the placement of other activities).

Although scheduling algorithm developers can develop
heuristics which are usually effective (i.e., the algorithms
performs better with the heuristic than without the heuris-
tic), it is inherent in the nature of heuristics (which liter-
ally mean “rules of thumb”) that they are not always ef-
fective. For example, local search procedures that depend
heavily on greedy heuristics can easily get stuck at local
optima. Additional mechanisms are necessary to counter-
balance the focusing effect of heuristics. One such mech-
anism is randomization, or noise, i.e., a mechanism that
sometimes (with probability � ) forces the local search algo-
rithm to make a random move instead of one that would be
prescribed by its heuristics. It is well-known that noise can
significantly improve the performance of local search. For
example, empirical studies such as (Selman and Kautz 1993;
Selman et al. 1994) have shown that the addition of random-
ized moves significantly improves the performance of SAT
local search.

Noise mechanisms have traditionally been static. That
is, the probability of making a random noise � at any given
point in time is determined a priori by setting the noise pa-
rameter � before the search algorithm is run. However, it
has been shown that the performance of local search mecha-
nisms is significantly affected by the value of this static noise
parameter (c.f. (McAllester et al. 1997)). It was recently
proposed that an adaptive noise mechanism which automat-
ically adjusts the noise level depending on the perceived
progress of the search algorithm may result in performance
that is comparable to, or even better than a hand-tuned static



noise setting (Hoos 2002).
In this paper, we consider the problem of enhancing the

robustness and performance of a scheduling algorithm for
spacecraft operations using noise mechanisms. First, we
give a brief overview of the ASPEN system for spacecraft
operations planning/scheduling. Then, we characterize the
impact of the standard, static noise on ASPEN local search
for two prototype domains. Finally, we show that an adap-
tive noise mechanism can achieve performance that is com-
petitive with static noise but is significantly more robust.

2 Iterative Repair Scheduling in ASPEN
ASPEN is a planning and scheduling system for spacecraft
operations (Chien et al. 2000), which has recently been de-
ployed on board the EO-1 earth imaging satellite (Chien et
al. 2003). In an ASPEN schedule, anything that indicates
an “incomplete” or “unsatisfactory” schedule is considered
a conflict (e.g., unscheduled activities, oversubscription of
resources). The task of the scheduling algorithm is to pro-
duce a schedule with no conflicts (or alternatively, produce a
schedule that maximizes some objective function (Rabideau
et al. 2000)).

While ASPEN is an application framework and has been
used to implement a range of planning and scheduling
paradigms, most commonly users have utilized the iterative
repair approach in ASPEN (Rabideau et al. 1999). The AS-
PEN Iterative repair algorithm works as follows: At each
step, ASPEN chooses a conflict to resolve by applying a
conflict selection heuristic. Then, a repair method selection
heuristic is applied to decide how ASPEN will attempt to
resolve the conflict (e.g., by moving an activity elsewhere,
removing/unscheduling an activity, etc). The selected repair
method may entail further choices, and at each such decision
point, decisions are guided by a heuristic that is applicable
at that decision point. Thus, each step in ASPEN iterative
repair can be characterized by the application of a decision
tree, where choices at the decision nodes are guided by a
heuristic that applies at that node. The root node is conflict
selection, the second level decision node is repair method
selection, and so on.

For every decision node, ASPEN implements a domain-
independent, default heuristic. However, as noted in Section
1, domain-independent heuristics sometimes fail. There-
fore, ASPEN provides a mechanism for users to implement
a domain-specific heuristic that is used instead of the default
heuristic.

We recently performed an analysis of 30 prototype and
fielded ASPEN applications in order to identify opportu-
nities for improvements to the scheduling algorithm. This
analysis revealed that users tended to rely on the default
heuristic for most of the decision points. However, we found
that in more than a third of the applications, the user had im-
plemented a domain-specific repair method selection heuris-
tic function, indicating that it might be worthwhile to focus

our efforts on that particular choice point.

2.1 Experimental Domains
In the rest of the paper, we describe experiments performed
with ASPEN in order to improve its repair method selection
procedure by adding randomization to the heuristic. The ex-
periments are performed on two prototype domains, ST-4
and EO-1.

The ST-4 domain models the landed operations of a
spacecraft designed to land on a comet and return a sample
to earth. The model has 6 shared resources, 6 state variables,
and 22 activity types. Resources and states include battery
level, bus power, communications, orbiter-in-view, drill lo-
cation, drill state, oven states for a primary and backup oven
state, camera state, and RAM. There are two activity groups
that correspond to different types of experiments: mining
and analyzing a sample, and taking a picture. The instance
used in this paper has 4 mining activities and 5 picture ex-
periments to be scheduled.

The EO-1 domain was a early prototype for the recently
deployed ASE on-board scheduler (Chien et al. 2003). EO-
1 is an earth imaging satellite featuring an advanced multi-
spectral imaging device. EO-1 mission operations consists
of managing spacecraft operability constraints (power, ther-
mal, pointing, buffers, consumables, telecommunications,
etc.) and science goals (imaging of specific targets within
particular observation parameters). Of particular difficulty
is managing the downlinks as the amount of data generated
by the imaging device is quite large and uplink opportunities
are a limited resource. The EO-1 domain models the opera-
tions of the satellite for a two-day horizon. It consists of 14
resources, 10 state variables, and 38 different activity types.
The instance used in our experiments includes 7 downlinks.

3 Adding noise to repair method selection
It is well-known that adding randomness, or noise to a local
search algorithm can potentially improve its performance.
That is, instead of always making a decision based on a
heuristic, the search algorithm can make a random move
with probability � . Traditionally, this noise mechanism de-
scribed above is static – the value of � is determined prior to
running the algorithm, and does not change during the run.

ASPEN provides a randomization parameter for each de-
cision point, and a majority of ASPEN applications have ap-
plied noise at the conflict selection and/or repair method se-
lection heuristics. In the case of the repair method selection
heuristic, a “random decision” means that instead of choos-
ing the repair method suggested by the heuristic, one of the
applicable repair methods for a conflict type is selected ran-
domly (Figure 1 shows each of the the conflict types linked
to each of the applicable repair methods applicable to them).

Figures 2 and 3 shows the noise response of ASPEN local
search on one instance each of the DS-4 domain and EO-1
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Figure 1: Hierarchy of ASPEN iterative repair decision points. The top row shows the conflict types (conflict selection decision
chooses one of these). The second row shows the repair methods available (linked to the conflicts to which they are applicable).
The third row and below show further decision points available, depending on the type of repair method.

domain, respectively.1 The default-heuristic lines
show the mean runtime required to solve the problem in-
stance as � was varied.2.

Figure 2 also includes a line showing the performance of
ASPEN iterative repair using a hand-coded, domain-specific
repair method selection heuristic. In this case, adding static
noise to this domain-specific heuristic only degrades the per-
formance, and never helps.

Note that the performance of the scheduling algorithm de-
pends significantly on the noise setting Noise values that are
too low or too high clearly degrades the performance of AS-
PEN iterative repair.

4 Adaptive Noise
Although static noise yields significant benefits there seems
to be room for improvement. In the previous section, we
observed that ASPEN with static noise is very sensitive to
the � setting. In our experiments above, we had the luxury
of being able to determine the optimal value for � experi-
mentally. In practice, such experimentation is usually not an
option. Therefore, a more robust mechanism that does not
require extensive tuning is desirable.

1We have repeated all of the experiments here with several in-
stances of each domain, and the results are similar.

2In the experiments in this paper, we ran ASPEN in “repair”
mode, where a valid “solution” is any schedule which satisfies all
constraints, i.e., all valid solutions have the same objective func-
tion value. ASPEN also has another, preference-based optimization
mode which can make finer distinctions among the set of solutions
that satisfy the hard constraints (see (Rabideau et al. 2000)
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Figure 2: DS-4 Noise response: runtime vs noise level � .
N=100
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Figure 3: EO-1 Noise response: runtime vs noise level � .
N=40

Intuitively, heuristics that have been developed over sev-
eral years, such as ASPEN’s domain-independent heuristics
should, in principle, work most of the time. On the other
hand, noise provides a last-resort escape mechanism when
the heuristic occasionally leads to incorrect behavior. Thus,
it seems that we should rely on the heuristics as long as they
are working, and use noise only when necessary.

This intuition can be directly implemented as an adap-
tive noise mechanism for iterative repair. Hoos (Hoos 2002)
recently proposed an adaptive noise mechanism for SAT lo-
cal search, which can be viewed as an instance of iterative
repair. We implemented Hoos’ mechanism in ASPEN, as
follows: 3

At the beginning of the search, the noise � is set to 0 (i.e.,
at the beginning of the search, we start by relying on the
heuristic).

If stagnation is detected (no improvements in the objec-
tive function within � steps), � is increased. When � is
increased, it is adjusted using the update formula: ���
�����
	��
����� . Whenever progress is made, � is updated
as: ������������� . Increases and decreases in � are asymmet-
rical. Each time after a noise increase, there is a period of
time while the sufficiency of the noise is tested (the delay of
� ), whereas noise decreases are applied every time there is
an improvement. Also, the magnitude of the noise increases

3We first implemented a similar mechanism that we developed
independently, but then discovered Hoos’ work and found that it
was simpler and performed just as well.

is smaller than the magnitude of the noise decreases.
Adaptive noise uses two control parameters, � and � , In-

tuitively, � should be large enough so that increasing the
noise level by applying the update formula in Section 4 will
result in a significant change. On the other hand, if � is too
large, then the resulting behavior will be a degenerate policy
where the repair algorithm switches back and forth between
heuristic-driven and totally randomized modes. Likewise,
� must be small enough so that noise values can increase
rapidly enough to minimize time wasted on fruitless appli-
cations the heuristic; yet, � should be large enough that some
time is being spent at the current noise level before further
increasing � .

We therefore believe that ����	�������� � � and !"���#�%$&�
covers a domain-independent range of intuitively “reason-
able” settings for � and � . More extreme parameter settings
would lead to behavior that does not conform with our intu-
itions of how adaptive noise is intended to behave.

We evaluated adaptive noise on the DS-4 and EO-1 do-
mains, for the cross-product of parameter settings � and � ,
where �(')� �*	+����	+!-,.���/�-,.���/�0! , �1'2!-,3	3��,4�5� ,
$6� . (i.e., 12
data points, each data point representing 78�9	+�0� runs for
the DS-4 domain, 7:��$6� runs for EO-1 domain).

In Figures 2 and 3, these are shown as the cluster of values
shown for ���;! (although � is actually adaptive).

For DS-4, the average performance across all 12 settings
was 0.85 seconds, with a standard deviation of 0.05. The
worst control parameter setting had a mean runtime of 0.926
seconds, while the best control parameter setting had a mean
runtime of 0.777 seconds.

For EO-1, the average performance across the 12 settings
was 34.90 seconds with a standard deviation of 3.08 sec-
onds. The worst control parameter setting had a mean run-
time of 41.89 seconds, while the best control parameter set-
ting had a mean runtime of 31.64 seconds.

From this we see that the performance of iterative repair
with adaptive noise is remarkably robust, clustering close
to the performance obtained by the best static noise setting.
This performance seems to be quite robust with respect to
the � and � control parameter settings, since the 12 control
parameter sets cover the range of reasonable parameter set-
tings.

For DS-4, the domain-independent heuristic combined
with adaptive noise achieves performance comparable to
that of the hand-coded, domain-specific heuristic.

In addition, we also ran the DS-4 model using adaptive
noise using the same 12 sets of control parameter settings.
For this combination of hand-coded heuristic + adaptive
noise, the average performance across all 12 settings was
0.63 seconds, with a standard deviation of 0.13. The worst
control parameter setting had a mean runtime of 0.86 sec-
onds, while the best control parameter setting had a mean
runtime of 0.48 seconds. In this case, adaptive noise tends
to minimizes the performance degradation observed when



using static noise.
All experiments reported here were run on a 2.7GHz

Pentium-4 processor. This is orders of magnitude faster than
on-board processors for spacecraft that are flying presently
and in the near future. Furthermore, on-board scheduling
systems are usually not allocated 100% of the CPU re-
sources at any given time. In fact, our benchmarks have
shown that the Linux workstation used here is 500-1000
times faster than the MIPS R3000 Mongoose 5 running at
12MHz that we are using on the EO-1 to run ASPEN for the
ASE experiment (Chien et al. 2003). Therefore, depending
on processing constraints, the relative disparities between
the runtimes for the iterative repair variants considered here
can have significant impact on spacecraft operations.

5 Related Work
In addition to the adaptive noise mechanism proposed by
Hoos which was used in this work(Hoos 2002), various
adaptive mechanisms for setting control parameters for
search/optimization algorithms can be found in the Artifi-
cial Intelligence and Operations Research literature. We de-
scribe some of the most closely related techniques below.

Local search with noise is similar to simulated annealing
(Kirkpatrick et al. 1983). Simulated annealing (SA) is es-
sentially a local search procedure that will move to a state
that has a worse objective function value than the current
state with some probability, where the � is dependent on
an annealing schedule. The random moves introduced by
noise mechanisms in iterative repair are intended to serve a
role similar to the probabilistic acceptance of worse states
in SA (escaping local optima or cycles). However, the ba-
sic repair/local search in ASPEN is inherently non-greedy
and very different from SA. The hierarchical scheme of first
making a non-greedy commitment to address a particular
conflict, means that the resulting state will frequently be
worse than the previous state, because all applicable meth-
ods of resolving that particular conflict will lead to a worse
state.

Another approach to enhancing the performance of
heuristic local search scheduling is to learn/adapt a static
heuristic strategy to optimize its expected performance on
the class of problems for which the solver is intended
(Gratch and Chien 1996). This is off-line learning approach
is complementary to the on-line adaptive approach taken
in this paper. For example, the default heuristic could be
learned by applying the off-line learning algorithm.

An alternate approach to on-line improvement of local
search is STAGE, (Boyan and Moore 2000)— which learns
good start states for multi-start local search (local search
which periodically “restarts” after local optima are identi-
fied). The selection of restart states for local search is or-
thogonal to move selection, which is addressed by adaptive
noise. Note that STAGE depends on the identification of
state features that can be used in the functional mapping

between search states and objective function values. This
may be difficult in general for a system like ASPEN due to
the complexity of the state representation, compared to the
problems to which STAGE has been applied so far.

6 Conclusions
In this paper, we showed that adding random moves (noise)
to iterative repair can significantly improve the performance
of an iterative-repair scheduling algorithm. However, the
traditional, static noise mechanism requires tuning of the
noise parameter, and we showed that in some cases (e.g., on
the DS-4 domain using the hand-coded heuristic), non-zero
noise can always hurt performance.

We then showed that an adaptive noise mechanism first
proposed for satisfiability testing (Hoos 2002) can yield per-
formance comparable to static noise using the optimal pa-
rameter noise value, while also demonstrating significant ro-
bustness to control parameter variations. This is a promis-
ing result, since for on-board applications, a mechanism that
can adapt to unforeseen situations is preferable to mecha-
nisms involving a control parameter that must be optimized
a priori.

In addition, we have shown empirically that while the per-
formance of adaptive noise may not be quite as good as using
the optimal static noise setting, the worst-case performance
(performance with the worst control parameter settings) is
quite close to the best-case performance. This robustness
is desirable for on-board operations, where mitigating the
worst case-behavior is arguably more important than opti-
mizing best-case behavior.

In this paper, we have considered the application of noise
to just one level of decision making in ASPEN heuristic re-
pair. In future work, we will investigate how noise can be
simultaneously, automatically tuned for all levels of deci-
sion making, including conflict selection, repair method se-
lection, and repair parameter value selection.
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