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Abstract

A number of successful applications of automated planning and
scheduling applications to spacecraft operations have recently
been reported in the literature. However, these applications
have been one-of-a-kind applications that required a substantial
amount of development effort. In this paper, we describe AS-
PEN (Automated Planning/Scheduling Environment), a mod-
ular, reconfigurable application framework which is capable
of supporting a wide variety of planning and scheduling ap-
plications. We describe the architecture of ASPEN, as well as
a number of current spacecraft control/operations applications
in progress.

1 INTRODUCTION

Automated planning/scheduling technologies have great
promise in reducing operations cost and increasing the au-
tonomy of aerospace systems. Planning1 is the selection and
sequencing of activities such that they achieve one or more
goals and satisfy a set of domain constraints. Scheduling se-
lects among alternative plans and assigns resources and times
for each activity so that the assignments obey the temporal
restrictions between activities and the capacity limitations of a
set of shared resources. In addition, scheduling is an optimiza-
tion task in which metrics such as tardiness and makespan are
minimized. Scheduling is a classical combinatorial problem
that has long been studied by researchers in operations re-
search. While traditional operations research approaches (c.f.
[7]) have focused on optimal solutions for highly restricted
classes of problems, there has been much recent interest in the
heuristic, constraint-based approaches that are applicable to
practical domains.
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1We take these definitions of planning/scheduling from [6].

Traditionally, the problems of planning and scheduling have
been studied separately. Recently, approaches that integrate
both the planning and scheduling process together under a uni-
fying framework in which plans are generated and scheduled
simultaneously by a single system (as opposed to using separate
planning and scheduling systems) have been developed. Some
recent aerospace applications of hybrid planner/schedulers in-
clude [10, 11, 15].

Although the benefits of applying planning/scheduling
technology can be significant, developing real-world, plan-
ning/scheduling systems is often an extremely time-consuming
task. Modeling a complex domain requires an expressive mod-
eling language, as well as data structures that represent the con-
straints expressed in the domain model. In addition, complex
data structures and algorithms that support incremental modi-
fications to candidate plans/schedules need to be designed and
implemented.

In order to enable the rapid development of automated
scheduling systems for NASA applications, we have developed
ASPEN (Automated Scheduling and Planning ENvironment),
a reusable, configurable, generic planning/scheduling appli-
cation framework. An application framework [14] is a class
library (i.e., a reusable set of software components) that pro-
vides the functionality of the components found in prototypical
instances of a particular application domain. Frameworks an-
ticipate much of an application’s design, which is reused in all
applications based on the framework. This implies a signifi-
cant reduction in the amount of code necessary to implement
successive systems.

The reusable components provided by ASPEN include:

� An expressive constraint modeling language to allow the
user to naturally define the application domain;

� A constraint management system for representing and
maintaining spacecraft operability and resource con-
straints, as well as activity requirements;
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� A temporal reasoning system for expressing and main-
taining temporal constraints; and

� A graphical interface for visualizing plans/schedules (for
use in mixed-initiativesystems in which the problem solv-
ing process is interactive).

ASPEN is currently being utilized in the development of an
automated planner/scheduler for commanding the New Mil-
lennium EO-1 satellite and a naval communications satellite,
as well as a scheduler for the ground maintenance for the
Reusable Launch Vehicle and a design analysis tool for the
Pluto Express spacecraft. The rest of the paper is organized
as follows: Section 2 describes the architecture of ASPEN
and its components. Section 3 describes some current appli-
cations of the ASPEN framework, including ground mainte-
nance scheduling for the Reusable Launch Vehicle, as well as
operations planning/scheduling for two autonomous satellites.
Finally, Section 4 describes related work.

2 The ASPEN Architecture

The development of an application framework for a particu-
lar domain implies a standardized approach to implementing
systems for that domain, and a commitment by the framework
developer to support applications that conform to that standard-
ized approach. It is impractical to develop a framework to sup-
port all viable approaches to planning and scheduling. Numer-
ous, widely divergent approaches to planning and scheduling
have been developed (cf. [3, 20]. Since planning/scheduling
are currently very active areas of research, there is no clear
consensus on which approaches are most useful. Thus, we
restricted the scope of our framework to approaches that had
been found useful for NASA applications in the past.2

By analyzing our previous experience with building plan-
ning/scheduling systems, (cf. [15, 11]), as well as requirements
for current and future applications, we abstracted a set of re-
quirements that is flexible enough to support a wide range of
applications, and developed the components described below:

2.1 Activity Database

The central data structure in ASPEN is an activity. An activity
represents an action or step in a plan/schedule. An activity has
a start time, end time, and a duration. Activities can use one or
more resources. All activities in a plan/schedule are elements
of the Activity Database (ADB), which maintains the state of
all of the activities in the current plan/schedule, and serves as
the integrating component that provides an interface to all of
the other classes.

2See [4] for an overview of planning/scheduling applications recently de-
veloped at JPL.

One function of the ADB is to represent and maintain hierar-
chical relationships between activities. Activities can contain
other activities as subactivities; this facility can be used to rea-
son about the plan/schedule at various levels of abstractions
(e.g., a scheduler can first reason about a set of activities with-
out considering that each of those activities are themselves
composed of a set of subactivities – this can make various
reasoning tasks much more computationally tractable.

Temporal and resource-constraints between activities are
also represented in the ADB. Although most of the actual
computational mechanisms that maintain these constraints are
implemented in other the modules described below, the pro-
tocol that a search algorithm uses to access constraints in the
context of a plan/schedule is implemented in the ADB. For
example, although the resource timelines are responsible for
detecting overuse of resources by activities, the ADB main-
tains data structures that indicate the assignment of activities
to specific timelines, so that one can efficiently ask queries
such as, “which resources does this activity use?”

As another example: although the temporal constraint net-
work (see below) is responsible for maintaining temporal con-
straints between individual activities, the ADB is responsible
for global constraints. (e.g., the ADB contains global con-
straints such as: “all activities occur after the start of the
scheduling horizon.” When an activity is created, the tem-
poral constraint that the activity occurs after the horizon is
created automatically by the ADB).

2.2 Temporal Constraint Network

A Temporal Constraint Network (TCN) is a graph data struc-
ture that represents temporal constraints between activities.
A temporal constraint describes the temporal relationship be-
tween an activity and other activities and/or the scheduling
horizon, and impose an ordering on the set of activities. The
TCN implements a Simple Temporal Problem, as defined in
[5], and represents a set of constraints, all of which must be
satisfied at any given time, i.e., it represents the conjunct of
all active constraints between activities in the ADB. Activities
are represented in the TCN as pairs of time points, where each
time point corresponds to the beginning or end of an activity,
and the edges in the TCN graph represent the constraints on
the temporal distance between the time points. The TCN can
be queried as to whether the temporal constraints currently
imposed between the activities are consistent.

2.3 Resource Timelines

Resource timelines are used to reason about the usage of phys-
ical resources by activities. Capacity conflicts are detected
if the aggregate usage of a resource exceeds its capacity at
any given time. Several subclasses of resource timelines are
implemented, including depletable resource timelines used to
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model consumable resources (e.g., fuel), and non-depletable
resources that are used to model resources which are not actu-
ally consumed by usage, but are instead “reserved” for a period
of time (e.g., a piece of equipment). Our current model of re-
source usage is discrete. That is, if we specify that an activity
such as move-forward uses 2 units of fuel, then both of these
units are modeled as being immediately consumed at the be-
ginning of the activity. This is a discrete approximation, since
the usage of the fuel may be better modeled as a linear function
such as ����������	�

��� 2 

��	�����
�������
�����������
���� , where 
 is the time
elapsed since the beginning of the activity, and ����
�������
�����������
��
is the duration of the activity.

2.4 State Timelines

State timelines represent arbitrary attributes, or states, that can
change over time. Each state can have several possible values;
at any given time, a state has exactly one of these values.
Activities can either change or use states. For example, a door-
open activity would set the state of door to be open, while
an enter-building activity would require that the state of door
be open. As activities are placed/moved in time, the state
timeline updates the values of the state, and detects possible
inconsistencies or conflicts that can be introduced as a result.
For example, an activity that requires that the door be open is
placed at time t, then the state timeline checks to verify that
the door is in fact open at time t. Otherwise, a state constraint
violation is indicated. Users can define legal sequences of state
transitions. The state timeline class will detect illegal transition
sequences if they are introduced into the timeline.

For example, consider modeling a traffic light with a state
timeline, traffic-light. The possible values are �� !�"�#� , ��������$"% ,
and  !�"& . The legal state value transitions are: �� "�"��� to ���"����$"% ,
��������$"% to  !�"& ,  "�"& to �� "�"��� . All other transitions are illegal.

2.5 Parameter Dependency Network

Each activity has a number of parameters that are either user-
defined or computed by the system, such as start time, end time,
duration, any resources it uses, any states it changes/uses, etc.
In ASPEN, it is possible to create dependencies between pairs
of parameters within the same activity, or between pairs of
parameters defined in different parameters. A dependency be-
tween two parameters ' 1 and ' 2 is defined as a function from
one parameter to another, ' 1

�)(*	 ' 2
� , where (*	,+-� is an arbi-

trary function whose input is the same type as p2, and whose
output has the type of p1. These dependencies are represented
and maintained in a Parameter Dependency Network (PDN).
The PDN maintains all dependencies between parameters, so
that at any given time, all dependency relations are satisfied.
Note that if there exists a dependency such that ' 1

�.(*	 ' 2 � , its
inverse dependency, ' 2

�/(10 1 	 ' 1
� does not necessary exist,

unless the user specifies the inverse relationship and specifies
the inverse dependency as well.

Note that the TCN can be seen as a special case of a PDN in
which the functional relationships between the parameters (ac-
tivity start/end times and durations) is a distance relationship,
and for which very efficient constraint propagation algorithms
have been implemented.

In general, as commonly used special cases of functional
dependencies between parameters (such as temporal distance
relationships), it can be useful to develop special dependency
networks that implement efficient constraint propagation al-
gorithms that take advantage of the special structure of these
dependencies, instead of relying on the general mechanism
offered by the PDN.

Such special-purpose dependency networks can be imple-
mented as subclasses of the abstract parameter dependency
network, or (if the protocol that must be supported is suffi-
ciently unique) abstracted out as a separate basic component
of ASPEN, as was done with the TCN.

2.6 Planning/Scheduling Algorithms

The search algorithm in a planning/schedulingsystem searches
for a valid, possibly near-optimal plan/schedule. The AS-
PEN framework has the flexibility to support a wide range
of scheduling algorithms, including the two major classes of
AI scheduling algorithms: constructive and repair-based algo-
rithms.

Constructive algorithms (e.g., [6]) incrementally construct a
valid schedule, ensuring that at every step, the partial schedule
constructed so far is valid. When a complete schedule is con-
structed, it is therefore guaranteed to be valid. Repair-based
algorithms(cf. [9, 19]) generate a possibly invalid complete
schedule using either random or greedy techniques. Then, at
every iteration, the scheduled is analyzed, and repair heuristics
that attempt to eliminate conflicts in the schedule are iteratively
applied until a valid schedule is found.

The search algorithms that have currently been implemented
include:

� forward dispatch, a greedy, constructive algorithm;

� IRS, a constructive, backtracking algorithm based on [11];
and

� DCAPS, a iterative repair based algorithm based on [15].

2.7 Graphical User Interface

The ASPEN Graphical User Interface (GUI) component pro-
vides tools for graphically displaying and manipulating sched-
ules. Resource and state timelines are displayed. Activities are
overlayed on the timelines, and users can directly manipulate
activities using standard drag-and-drop procedures.
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Activity prevalve removal
�

duration = 15
slot subsystem
after prevalve prep with (subsystem == this.subsystem)
before prevalve replace with (subsystem == this.subsystem)
Reservation hydraulic lift usage

�

resource = hydraulic lift;
usage = 1;
duration = 5;�

requires state prevalve-purged TRUE
requires state prevalve-illuminated TRUE�

Resource hydraulic lift
�

type non-depletable
quantity 1�

Figure 1: Sample of ASPEN modeling language (part of the
Reusable Launch Vehicle maintenance model). This describes
an activity for removing the prevalve of an engine subsystem.

2.8 Extending ASPEN for Applications

There are two means by which ASPEN can be extended and
specialized for a particular application. These are:

� Creation of domain-specific models using the modeling
language, and

� Extension of the application framework code.

The modeling language is used to specify domain-specific
constraints and activities. Figure 1 shows part of a domain
model specified in the ASPEN modeling language.

The base ASPEN framework, including the modeling lan-
guage is sufficiently extensible to support a range of appli-
cations without any extensions to the code of the framework
itself (e.g., the Reusable Launch Vehicle ground maintenance
scheduling application is directly derived from the framework
by simply specifying a model file).

Extensions to the framework code need to be made when
changes in the behavior of ASPEN components are required.
This includes two classes of extensions: epistemological and
heuristic.3 Epistemological extensions are necessary when
new representational capabilities are in order to model a new
domain. For example, if we wanted to implement a new type
of resource timeline which had a more sophisticated, con-
tinuous model of resource usage4, then a new subclass of the
resource timeline abstract class would need to be implemented.
Heuristic extensions customize the behavior of the framework
to improve the quality of solutions found or the time to find

3This classification follows [8].
4Recall from Section 3 that we use a simple, discrete resource usage model.

good solutions for a particular domain.5 Examples of heuris-
tic extensions include new repair heuristics for a repair-based
scheduler, or an entirely new search algorithm.

3 APPLICATIONS OF ASPEN

In this section, we describe ongoing applications of the AS-
PEN scheduling system to: generation of spacecraft command
sequences for the New Millennium Earth Observing One satel-
lite and the U.S. Navy UHF Follow On One (UFO-1) satellite;
generation of mission operations sequences to assist in design
analysis for science and operability; and rapid generation of
plans for maintenance and refurbishing for Highly Reusable
Space Transportation.

3.1 Spacecraft Commanding

The primary application area for the ASPEN scheduling system
is generation of spacecraft command sequences from high level
goal specifications.

In this role, automated scheduling systems will encoding of
complex spacecraft operability constraints, flight rules, space-
craft hardware models, science experiment goals and oper-
ations procedures to allow for automated generation of low
level spacecraft sequences by use of planning and scheduling
technology.

By automating this process and encapsulating the operation
specific knowledge we hope to allow spacecraft command-
ing by non-operations personnel, hence allowing significant
reductions in mission operations workforce with the eventual
goal of allowing direct user commanding (e.g., commanding
by scientists).

Current ASPEN applications to spacecraft commanding fo-
cus on two missions: the New Millennium Earth Observing
One (NM EO-1) satellite (to be launched in late 1998) and the
U.S. Navy UHF Follow On One (UFO-1) satellite (currently in
orbit). NM EO-1 [18] is a earth imaging satellite featuring an
advanced multi-spectral imaging device. For this mission, op-
erations consists of managing spacecraft operability constraints
(power, thermal, pointing, buffers, consumables, engineering
downlinks, etc.) and science goals (imaging of specific tar-
gets within particular observation parameters). Of particular
difficulty is managing the downlinks as the amount of data gen-
erated by the imaging device is quite large and ground contacts
are a limited resource.

The current ASPEN EO-1 scheduler generates an initial
schedule using forward sweeping greedy dispatch to gener-
ate an initial schedule, then uses the DCAPS iterative repair
algorithm to resolve state, resource, and temporal conflicts.

5This implies that the framework is, in principle capable of eventually
finding some solution without a heuristic extensions.
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Another ongoing effort in the area of spacecraft commanding
is the development of an advanced commanding system for the
U.S. Navy UFO-1 satellite [1]. UFO-1 is an on-orbit testbed
managed by the U.S. Naval Academy Space Artificial Intelli-
gence Lab (SAIL) at Annapolis. In this collaboration, SAIL is
developing an uplink, downlink, basic data transport, and com-
manding capability to be interfaced with an advanced planning
and scheduling engine (ASPEN). In this application, ASPEN
will allow high level commanding of the UFO-1 satellite to
perform high level functions such as: auto pitch momentum
dumping, preparation for eclipse season, delta-V maneuvers,
IRU warmup and turnon, battery cell pressure bias calibration,
delta inclination maneuvers, and other engineering housekeep-
ing functions. The ASPEN scheduling engine then performs
appropriate expansion and conflict resolution to generate lower
level command sequences to achieve the higher level goals.

3.2 Design Evaluation

ASPEN is also being applied in the Pluto Express [2] for the
dual purposes of science planning and design evaluation for
science and operability [2]. In support of science planning, we
are developing high level models of proposed PX spacecraft to
assist in automated generation of science data acquisition plans
(e.g., high level activity sequences) from high level science
goals to assist in developing science plans for mission profiling.

This same capability to generate science plans is being used
to evaluate candidate spacecraft designs from the standpoint of
emergent design aspects such as science return and operability.
This spin-off application arises from the observation that often
it is difficult to determine how well a given spacecraft design
will perform without fleshing out approximate operations se-
quences for critical phases of the mission (e.g., encounter).
In order to address this difficulty, we are developing a design
analysis tool which accepts as input: a candidate spacecraft
design (and operations constraints, models, etc.); a set of engi-
neering and science objectives; and a set of scoring functions
to assess how well a sequence achieves the objectives. This
tool then applies an ASPEN-based planner/scheduler to gen-
erate a candidate sequence; then uses the scoring function to
score this sequence in terms of the aspects of science, operabil-
ity, etc. This enables design teams to rapidly and impartially
evaluate large numbers of spacecraft designs with little effort,
thus allowing improved analysis of design tradeoffs to enhance
science and operations concerns for future missions.

3.3 Maintenance Scheduling

As part of the NASA Highly Reusable Space Transportation
(HRST) program6 we have been developing and demonstrat-
ing advanced scheduling systems for the rapid generation and

6Which targets the development of technologies enabling highly reusable,
low-cost space transportation systems [12, 13].

revision of plans for maintenance and refurbishment of highly
reusable launch vehicles. In this application, real-time teleme-
try downlinked either during flight or immediately after flight
would be analyzed to automatically generate a set of main-
tenance requests, which would then be transformed into a
refurbishment plan by an automated planning and schedul-
ing system which would account for available equipment and
resources as well as the intricacies of the refurbishment pro-
cedures of the highly complex propulsion systems. The end
target is to allow a turnaround of several hours for the HRST
spacecraft to support a flight frequency on the order of several
flight per day.7 If the maintenance schedule can be generated
using in-flight telemetry then the refurbishment process can be
speeded even further by allowing for downlinking of requests
for pre-positioning of equipment and resources to minimize
schedule delay.

Once the actual maintenance plan has been generated, the
planning tool continues to be of use in two ways. First, in many
cases there can be several mutually exclusive maintenance ac-
tivities which can be performed next. Via lookahead and crit-
ical path analysis automated scheduling software can deter-
mine the next activities to enable the minimal makespan (over-
all schedule execution time). Second, as unexpected events
arise (such as equipment failures, resource unavailabilities, and
schedule slippage), the automated scheduling software has the
ability to revise the schedule so as to minimize schedule disrup-
tion (movement of activities and resources from their original
assignments) and schedule slippage (delay of the completion
of the overall refurbishment).

In order to test and validate this technology we have
been utilizing test maintenance procedures Specifically, we
used the maintenance procedures developed for the LO2 and
LH2 propulsion systems for the Rockwell International X-33
Reusable Launch Vehicle.8 The procedures derived for main-
taining and refurbishing the test articles provided a rich testbed
for Space Propulsion System Maintenance Scheduling. Our
testbed model consisted of 576 activity types, 6 resources, and
on average 6 state, resource, and precedence constraints per
activity. In this application we allowed maintenance requests
to request either refurbishment of specific subsystems or ma-
jor systems. In order to schedule the maintenance requests
the ASPEN system used a forward sweeping greedy dispatch
algorithm which used strong knowledge of the precedences
of activities in the plan. The resulting scheduler has been
able to generate schedules for refurbishment problems involv-
ing approximately half of the subsystems (8 subsystems, 358
activities) in 8 minutes.

7In comparison, the space shuttle refurbishment process takes approxi-
mately 65 days with a flight frequency of once per 4 months; the current
Reusable Launch Vehicle initiative has a targeted flight frequency of once
every 1-2 weeks.

8Developed by Rockwell International during the Phase 1 competition of
the Reusable Launch Vehicle Program which ended in July 1996.
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4 RELATED WORK

The idea of an application framework for planning/scheduling
was pioneered in the OZONE system of Smith et al. [16, 17],
which has been used in production management, transportation
scheduling, and logistics applications. Differences between
OZONE and ASPEN include the following:

� OZONE has emphasized applications in manufacturing
and transportation planning and scheduling, while AS-
PEN is designed for spacecraft operations domains.

� OZONE emphasizes decision support tools, while AS-
PEN (due to the nature of spacecraft operations domains)
emphasizes tools that support more autonomous decision-
making applications.

5 CONCLUSIONS/FUTURE WORK

In this paper, we have described ASPEN, a reconfigurable,
modular framework for planning/scheduling applications, and
described three current applications of ASPEN in spacecraft
operations. Although the development of a generic software
architecture has required a substantial, initial investment of ef-
fort, we expect the total development effort for a set of schedul-
ing applications to be significantly decreased (as compared to
individually developing each of the applications).

ASPEN is currently a scheduling-oriented system, although
some planning capabilities are supported for hybrid plan-
ning/scheduling applications such as the EO-1 and UFO-1.
We plan to extend ASPEN to support additional planning ca-
pabilities. Currently, ASPEN already supports much of the
functionality of state of classical planning systems [3]. We
plan to extend ASPEN’s planning capabilities so that it can be
used as a framework for planning applications that also exploit
the additional temporal reasoning and resource management
capabilities which are available through ASPEN’s scheduling-
oriented facilities.
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