Complete Restart Strategies Using a Compact Representation of the Explored
Search Space

Alex S. Fukunaga
Jet Propulsion Laboratory
Califorrnia Institute of Technology
4800 Oak Grove Dr., M/S 126-347
Pasadena, CA 91109-8099
fukunaga@aig.jpl.nasa.gov

Abstract RestartSear ch(Probleml nstance)
. . solver-state = Initial State;
Applying restarts to complete search algorithms for Repeat :
constraint satisfaction is an effective method for sol ver - st at e=Backt r ackSear ch(sol ver - st at e)
improving their expected performance on some dif- Until solution found or timeout
ficult problems. An issue with restarts is that com-

pleteness can be lost if the algorithm is constantly
interrupted in the midst of a search. We propose
a general method for called path-recording, which
guarantees completeness for restart strategies and
requires space linear in the number of restarts and
decision variables. An example application in the
domain of propositional satisfiability testing is pre-
sented.

Figure 1: A restarting search strategy

Although the discovery of heavy-tailed distributions in
large-scale CSPs as a motivation for restarts is relatively,
the underlying problem (costly “mistakes” made by back-
tracking algorithms early on in the search tree leadingnig lo
periods of fruitless search) has been well-known, and aimil
1 Introduction strategies have been previously studied. For example, Hu-
A restart strategy is a technique by which a berman, Hogg, and Lukogelubermaret al, 1997 motivate
search/optimization algorithm is interrupted in the miofsa the use of algorithm portfolios (parallel runs of searctoalg

run, then restarted such that a different portion of thecsear thms applied to a single problem instance) using a similar
space is explored. argument. Iterative samplindiangley, 1992 can be viewed

Restarts have long been used in the context of local seard® & degenerate backiracking algorithm that “restarter aft
and other incomplete search/optimization algorithms in or €very leaf node expansion.
der to encourage exploration of the search space and escapel he general schema for a solver using randomized restarts
local optima. Recently, restarts have been shown to yields very simple, as shown in Figure Backt r ackSear ch
dramatic performance improvements when applied to comis a backtracking algorithm (e.g., chronological backtrac
plete, backtracking-based algorithms for constrainsézti ing, conflict-directed backjumpinfStallman and Sussman,
tion problems (CSPs), including boolean satisfiability TpA 1977), which has been modified such that based on some
[Gomeset al,, 1998; 2000, enabling the solution of problems restart policy or schedule it will interrupt the search and
which were previously unsolvable. return control to the top-leveRest ar t Sear ch function.

Gomes et al studied the variability in runtimes of algo-In some casesBackt rackSear ch has been modified
rithms for CSPs and found that the performance of backtrackso that its variable/value selection strategies are random
ing algorithms exhibits a heavy-tailed distributibfBomeset ized (c.f. [Gomeset al, 199§ so that repeated calls to
al., 2004. For many “difficult” problem instances, they ob- Backt rackSear ch results in different search algorithm
served that some runs of a randomized, complete solver tebehavior. In other cases, conflict clauses learned duriag th
minated very quickly, while other runs on the same instancérevious call toBackt r ackSear ch can cause the search
took a very long time. That is, the runtime of a given al- behavior in a subsequent call to be significantly different
gorithm on an instance depended not only on the probleriithout any need for explicit randomizatigMoskewiczet
instance, but also on the particular random choices made b3l., 2001.
the algorithm. By repeatedly, rapidly restarting a sealeh a There are several issues that are introduced by applying
gorithm, it is possible to take advantage of any significantestarts. First, completeness is lost. Suppose we are given
mass in the leftmost part of this runtime distribution,,ieven an unsatisfiable CSP problem instance. A complete, back-
though a problem instance might be very difficult most of thetracking algorithm will eventually return UNSAT. However,
time, a series of short runs could result in a run which “gotif we take a standard backtracking algorithm and apply ran-
lucky” and solved the instance quickly. dom restarts with some arbitrary restart frequency, we are

WS Stochastic Search Algorithms 1 IJCAI-03, Acapulco

no longer guaranteed that we can prove unsatisfiability. Alall clauses learned by conflict analysis.

though it may be possible for the solver to prove unsatidfiabi In the rest of this paper, we propgsath-recordingan al-

ity within a given time window between restarts, tpgaran- ternate approach based on compactly representing the por-

teeof completeness is lost, because the solver could alwayons of the search space that have already been explored.

end up restarting before a proof of unsatisfiability is com-Path-recording is similar to search signatures, but is more

pleted?! general, in that it is an extension to backtracking, and-s to
A second problem is the loss sfstematicitythe property tally independent of any conflict analysis mechanism. Be-

that nodes in the tree are visited at most once. Systenyaticiicause it depends only structure of the search tree, it can be

is at least theoretically desirable, since revisiting skeatates applied to any backtracking-based algorithm. We show how

is intuitively “inefficient”. Unfortunately, after a restathere path-recording can be implemented for satisfiability testi

is no guarantee that a state which was visited in a previougnd report some preliminary empirical results that show tha

invocation ofBackt r ackSear ch in Figure 1 will not be path-recording can be used to improve the performance of

re-examined in subsequent iterations. backtracking satisfiability solvers with restarts.

One approach to guaranteeing completeness suggested in
[Gomeset al, 1999 is to use a restart schedule where the du-2 Path-Recor ding

ration of each run in between restarts is gradually incrésase . .
so that eventually, the final uninterrupted, “restart” wéisult W& Now propose a simple method which restores both com-

in a complete, search of the tree. A drawback of this approacRI€€ness, and (to some extent) systematicity to randainize

is that if the underlying solver does not use a mechanism suciFstart algorithms., atvery little cost. The key insightiattis
as clause learning, then each restart essentially throag aw possible to exploit the structure of the search trees eggdlor

all of the work done in the previous restarts, which can bePY Packiracking algorithmsin order to compactly and qujickl
wasteful. Note that although they proposed gradually mere recordwhich portions of the search tree have already been ex-

ing cutoffs, Gomes et al actually used a constant cutoffevalu plored in the form of new constraints. These constraints are

between restartiGomeset al, 1998 because the strategy 2dded to the system in such a way as to prevent the search
of rapid random restarts maximizes the likelihood of hgtin 2/90rithm from re-visiting the states encoded by these con-

a “lucky” restart (i.e., exploiting any significant mass et~ Straints. . . .
good part of the runtime distribution). The technique will first be demonstrated using a simple ex-
Another approach is to rely on a conflict-clause record—ample'

ing mechanism. Some modern SAT-solvers suclChaff Suppose we have a SAT instance with 4 variables,
[Moskewicz et al, 2001, GRASP [Marques-Silva and A,B,C,D. .) .
Sakallah, 1990 andrelsat [Bayardo and Schrag, 19pin- ~Assume a standard chronological backtracking algor!thm
corporate a learning mechanism that adds new clauses b€ depth-first search) that searches the space of Veriab
the clause set. Usually, these solvers implement a poIicSXalue assignments. For simplicity, assume that conflies ar
which periodically eliminate some of the learned claused!0t detected until all variables are assigned a valuefhere
based on the age and/or “relevance” of the clauses. Lynd§ NO constraint propagation. Furthermore, assume that var
and Marques-Silvg2003 show that if all recorded clauses 20!€s are selected in lexicographic order, and values are as
are kept between restarts, or if a policy gradually caused afigned in an arbitrary order (firstis tried, thenr).
clauses to be kept (e.g., by gradually increasing the size-. The algorithm will start at the root (all variables unas-
bound or relevance-bound of the retained clauses) then thé#igned). First, the algorithm assigAs= T'. Then it would
completeness can be guaranteed. A problem with this secorﬁ?s!gnB = T, thenC =T, thenD = T. Atthis point,
approach is that for a large enough problem instance, it wil'@ving failed to find a solution, it would backtrack éhand
be impractical to keep all clauses for the duration of the rur@SSign it a value of". If that fails, it would backtrack ot
without running out of memory/storage. In addition, at some2ndC, assigningt” to C'andT'to D. ,
point, the overhead introduced by the presence of all learne USing an abbreviated notation, this can be described as:
clauses can slow down the search algorithm. A=T,B=T,C=T,D = T;fail; backtrack onD.

A third approach proposed by Baptista, Lynce and A=7,B=T,C=T,D = F:fail, backtrack onD, then
Marques-Silva[2001 for a SAT soiver based on conflict- PacktrackorC. o
directed backjumping is to usesearch signatur¢hat sum- ...and so on, until either a solution is found or we .reach the
marizes the subtree that has been explored prior to a restaftate: A = F,.B = F,C = F,D = F, at which point the
The search signature is a set of clauses added to the formu¥garch tree is exhausted and we return UNSATISFIABLE.
during conflict-directed backtracking representing theeba ~ Figure 2illustrates a partially completed search treetfisr t
on thecausedMarques-Silva and Sakallah, 1996r back- ~ example. o
tracking of the variables representing the current seaathp ~ Now, suppose that the search is interrupted after the eval-
Search signatures use significantly less memory than kgepirtiation of the stateA = T, B = F,.C = T,D = F. That

is, a restart is triggered after the 6th leaf node from thief

1The same problem exists for satisfiable problems, but it iemo Figure 2 is expanded.

likely to be a problem for unsatisfiable problems becauseirecal, We can inspect Figure 2 and try to summarize the nodes
solving unsatisfiability requires proving that the wholestdoes not ~ that have been expanded so far. The nodes that have already
contain a solution. been expanded are exactly the nodes to the left ofdinent

WS Stochastic Search Algorithms 2 IJCAI-03, Acapulco

ProcessPath(path_remaining,path-above)
Deci si on = Pop_fromback(pat h_r enai ni ng)
AR I f Decision = right_branch
C = Newd ause()
Add_Li teral (C, Deci si on)
For each Decision in Path_Above
Add_Li t eral (C, Opposi te(Deci sion))
Add_Cl ause_To_Cl ause_Dat abase(Q)

A=T, A=T, A=T, ProcessPat h(pat h_r emai ni ng,
A=T, B=T.C=T| |B=T.C=T| |B=T, C=T pat h- above+Deci si on)
—— N
AT | AT || AT | AT | A | |52 Figure 4: A Path-Recording algorithm for SAT
o—r | |c=t ||c=F | |c=F | |c=T | |C=T,
D=T D=F D=T D=F D=T D=F

ProcessPat h algorithm (Figure 4). The call to
ProcessPat h(Current Pat h, NULL) adds the neces-
Figure 2: Partial search tree for a backtracking SAT solver sary clauses required to record the portion of the searadespa
explored in this current invocation of the backtrackingoalg

BacktrackSearch(Vars) rithm.

| f sol ution-found The number of clauses learned by path recording after each
Ret urn sol ution restart is linear irl/, the number of decision variables. More

v= Sel ect a variable from Vars precisely, it is no more than the number of right-branches in

for each value a in Domain(v) the current path. Thus, aftét restarts, there will be at most

Assi gn(Var s=a) RV new clauses. In addition, there is a small,V') space

Deci si onSt ack. push_front (pair (v, a)) requirement for maintaining the current path.

Backt rackSear ch(Var s-v) The call to ProcessPat h(Current Pat h) clearly

Deci si onSt ack. popfront () takesO(length(CurrentPath)) time, which isO(V), lin-

Return failure (no solution) ear in the number of decision variables. Since ProcessPath

only needs to be called just before a restart, the overhead in

troduced into the overall solver will be negligible, assngi
that restarts are relatively infrequent.

The other overhead is incurred when adding/removing de-
cisions to the current path (Figure 3). However, both ofg¢hes
operations can be done in constant time per decision if the
path (the sequence of decisions marked by the dark lines). Ieurrent path is implemented as a stack. Profiling the SAT
should be clear that we have proven that any state with theolver used for our experiments in Section 3 showed that this
partial assignmentt = T, B = T have been completely ex- overhead is negligible.
hausted. Thus, we can concludg€:AA B). Similarly, we can The above model and examples assumed a very sim-
also conclude.(AA-BACA—-D). Therefore, the constraint ple depth-first backtracking algorithm with static (lexjm
(in conjunctive normal form) which exactly summarizes theraphic) variable and value orderings. However, it is easy to
subtree which has been explored so far (and proven not teee that even with more sophisticated variable/value erder
have a solution) i$—A VvV -B) A (mAV BV —-C VvV —-D) The ing, path-recording still retains completeness. Also (ibeal
two clause€’; = (mAV-B) andCy = (wAVBV-CV~-D)) extensions to backtracking such as constraint propagation
are added to the original formula. conflict-directed backjumping do not affect its correcthes

Now, consider what happens after a restart. If we ever Also, in our examples we assumed that the restart took
reach a partial assignment which sets= 7', B = T, then place immediately after some leaf node was opened. Path-
(1 is violated, forcing a backtrack. recording is correct even if the restart takes place in an in-

From this example, we can see intuitively that summarizterior node of the search tree, because the nodes which are
ing the explored portion of the search space requires us teliminated from future consideration correspond to thé lea
record one clause for every right-branch taken by the ctrremodes to the left of wherever the current path is.

Figure 3: Example backtracking algorithm with an explicitl
maintained decision stack

path. We now present the path recording algorithm. The above algorithm for propositional SAT can be gener-
Let thedecision staclbe a listd1, d2, ..d,, which encodes alized in a straightforward manner for arbitrary trees.uégy
the decisions made in the search tree. 5 shows part of a search tree for a problem on a tree with

Figure 3 shows a chronological backtracking algorithmbranch factor three (e.g., a constraint satisfaction mbl
which maintains a decision stack. Thashandpopoper- where variables are assigned one of 3 possible values)nGive
ators add and remove assignments to the decision stack. the current path marked by the dark line, the constraintgto b

When a restart takes place, the solver invokes thadded in this case are:

WS Stochastic Search Algorithms 3 IJCAI-03, Acapulco

mented. A clause is subsumed by another if the liter-
@ als inc are a strict subset of the literals én. For example,
(a VbV —c) is subsumed bya vV —c). Note that ifc; sub-
sumesc, thenc is redundant and can be removed from the
@ e @ database without affecting the search algorithm behaRier.
moving subsumed clauses can speed up the search (by remov-
ing the overhead associated with maintaining the subsumed
@ clauses in the clause database). During a restart, when the
@ @ path clauses are added to the database, all previouslingxist
clauses are compared to the path clauses, and any subsumed
clauses which are found are removed from the database.

@ @ e When restarting, the solver uses the algorithm described
in Section 2 and adds the derived path clauses to the clause
database.

We tested the following configurations:
Forget-everything

e Path-Recording (PR)

¢ PR+1UIP+Forget-Conflicts

Figure 5: Partial search tree for a backtracking algoritipm a
plied to a 3-valued search problem

e PR+1UIP
(A=1) e 1UIP
=((A = 2’/\ B=1)V(A=2AB=2)), These configurations are composed of different combina-

~((A=2AB=3AC=1)V(A=2AB=3AC =2)) tions of three clause learning and forgetting strategiss, a
shown in Tables 1 and 2Path recordingindicates whether
. . path recording was turned onl-UIP indicates the use of
3 Empirical Study: SAT the 1-UIP conflict-based learning algorithiforget conflicts

We now empirically study path-recording applied to the do-indicates that even when 1-UIP was activated, all conflict
main of SAT. Backtracking algorithms based on the Davis-Clauses were deleted during each restart. Thus, in our ex-
Putnam-Logemann-Loveland (DPLL) algorithidavis and ~ Periment, conflict clauses are either not learned at alinsh
Putnam, 1960; Davist al, 1963 represent the current state and never forgotten, or deleted after each restart. We have
of the art in complete, SAT solvers. Gomes et al extendedot yet experimented with various policies for periodigad-
two systematic DPLL solversatzandrelsat with random moving clause databases,such as relevance-based, &gg-bas
restarts and found significantly improved performance comand length-based policies (c.fBayardo and Schrag, 1997;
pared to the complete, deterministic original versions orZhanget al, 2001).
some pr0b|em instances. Random restarts are now com- TWoO sets of test formula were used: The first set was a
monly used in modern DPLL-based solvers suchChaff ~ set of 150 variable, 615-clausesatisfiableformula (100
[Moskewiczet al, 2001. instances) from the uufl50 benchmark set atgla¢ ! i b
We implemented a systematic, DPLL based SAT-solver. [{www.satlib.org) database (hard, random unsatisfiable in-
uses conflict-directed backjumping, 1-UIP clause learningstances from the phase transition regiduitchell et al,
and the VSIDS variable selection heuristic as implemented993). The second set was the Superscalar Suite 1.0a bench-
in zChaff[Zhanget al, 2004. The current implementation mark set (9 instances, all satisfiable) by Miroslav Veleailav
is a prototype, lacking several features found in statehef- ~ able at http://www.ece.cmu.edu/ mvelev. _
art solver implementations. It uses a counter-based scheme Three restart policieswere used, all of them using a
for unit propagatiofiCrawford and Auton, 1993ather than “ncrement parameter:
a watched literal scheme, and we have made no attempt to e constant restarts everyncrement backtracks.
optimize data structures for cached_ memory accesses; both | doubling- The nth restart occurs afteimterval x 2"
of these was found to have a significant impact on perfor- oy tracks. E.g., ifnterval=100, restarts occur at 100,
mancelMoskewiczet al, 2001; Zhang and Malik, 2003Fi- 200, 400, 800, 1600...backtracks.
nally, our solver is implemented in Common Lisp with only]) o
moderate hand-coded optimizations (e.g., type declastio ® Illnear- The first restart occurs &@riginalInterval =
user-level memory management), which imposes some per- increment backtracks. The next restart occursx
Nevertheless, the overall performance of our solver seemst Originallnterval=100, then restarts occur at 100, 300,
be competitive with reasonably efficient solvers suchehs 600, 1000, 1500... backtracks.
sat All of our experiments were performed on a 2.78GHz Tables 1 and 2 and summarizes the results. The “clauses
Intel Pentium 4, 512K L2 cache, and 1GB memory. at end” column indicates the numbe of clauses in the clause
As a further optimization which exploits path-recording, database at the end of each run, including all clauses l@arne
a simple subsumed-clause elimination scheme was implésy 1-UIP and path-recording. We observe that:

WS Stochastic Search Algorithms 4 IJCAI-03, Acapulco

configuration path | 1-UIP forget restart restart| backtracks| assignmentg clauses| runtime
name | recording conflicts policy | increment atend
Forget-Everything n n n/a | constant 1000 | no successes$
Path-Recording (PR y n n/a | constant 1000 18510 610789 809 4.96
Forget-Everything n n n/a| constant 100 | no successes$
Path-Recording (PR y n n/a | constant 100 20024 656354 1917 7.90
PR+1UIP+Forget-Conflicts y y y | constant 100 12951 431668 1458 5.52
1UIP n y n | constant 100 8203 276376 8766 10.50
PR+1UIP y y n | constant 100 8201 278132 1950 8.98
Forget-Everything n n n linear 100 97724 3235352 645 25.41
Path-Recording (PR y n n linear 100 17384 575339 798 4.74
PR+1UIP+Forget-Conflicts y y y linear 100 9365 318631 1398 3.79
1UIP n y n linear 100 7861 267469 8493 7.15
PR+1UIP y y n linear 100 7922 270536 3415 6.52
Forget-Everything n n n | doubling 100 29040 961636 645 7.50
Path-Recording (PR y n n | doubling 100 17313 571734 709 4.64
PR+1UIP+Forget-Conflicts y y y | doubling 100 8703 297254 3106 4.70
1UIP n y n | doubling 100 7952 270652 8590 7.94
PR+1UIP y y n | doubling 100 8027 273136 5033 6.60

Table 1: Comparison of restart strategies on 150 varialflg,ofause unsatisfiable formulas (100 instances from th&5Quf
dataset asat | i b). Mean ovel00 instances. (Timeout after 200000 backtjacks

e The utility of path-recording depends on the class ofthat has just been searched is the same. The main difference
problem instance, as well algorithmic features (e.g.js that path-recording generalizes this key idea and ptesen
restart strategy, whether clause-learning was enabled).and implements it in a framework completely independent of

e When 1-UIP is not used, path-recording Signiﬁcanﬂyconﬂict-directed bac_ktracking_. As a result_, it can be agpli
improves performance over not learning anything at all.to many other domains to which systematic tree-search algo-

. i _ .. rithms can be applied.
e When 1-UIP is used, path-recording does not signifi-
cantly reduce the number of backtracks, but eliminating

conflict clauses subsumed by the recorded path resultsg1 In addition to its application to restarts, the path-reauyd

a smaller clause database, resulting in somewhat fast chnique can be used to share/broadcast thg exhaustepl re-
. gions of the search space among processes in an algorithm
runtime than 1-UIP alone.) o .
portfolio or distributed problem-solving system. For exam
For the constant restart schedule, PR+1UIP+Forgetpe if two backtracking-based solvers are executed inlighra
Conflicts outperformed pure path-recording. However, in Tagn the same problem instance, they can succinctly commu-
ble 1, it is worth noting that path-recording by itself isuf pjcate to each other which regions of the search space have

cient to allow all of the instances to be solved, even thoughyready been exhausted, without having to explicly listrgve
none of the Forget-Everything runs succeeded in provingsingle state that has been explored.

unsatisfiability of the formulas within the backtrack bound
(100,000 total backtracks) bound, for arrement value of Although we have focused on constraint satisaction, path-
either 100 or 1000. This demonstrates a case where the risk 9 P

: : L . ding can be applied to other tree-search domains. For
of applying a rapid restart strategy is mitigated by resipri recor . ; LT
completeness using path-recording. example, in branch-and-bound algorithms for optimization

(e.g., traveling salesperson), path-tracking can be wsed-t
. . able restarts without losing completeness and systertyatici
4 Discusson This will allow short, rapid “probes” of the search space in
We described path-recording, an algorithm for generatingrder to try to quickly obtain good upper bounds that can be
constraints summarizing the subtrees explored by a backised to increase pruning and decrease the overall search ef-
tracking algorithm. Path-recording can be implementechas afort. However, in some of these domains, the overhead in-
extension to most backtracking algorithms for constramt s curred by adding the constrain-checking infrastructure- ne
isfaction and optimization. Preliminary experiments galé essary to enable path-recording may overwhelm the poten-
that it can help the performance of a restarting, SAT-solvertial reduction in search effort, while in CSP domains such
For any particular domain, there will be tradeoffs betwegn 1 as SAT, there is very little additional overhead incurred by
the benefits of completeness and limited systematicityedfe path-recording because efficient representation of caingsr
by the technique, and 2) the overhead associated with genés already a necessary part of state-of-the-art solvers: An
ating and representing these new constraints. other promising application seems to be branch-and-bound
Path-recording is quite similar to the search signatute-tec algorithms for integer programming, which, like CSPs, read
nique proposed by Baptista et [#001. The main idea of ily supports the insertion of new constraints derived bypat
remembering sufficient constraints to summarize the sabtrerecording.

WS Stochastic Search Algorithms 5 IJCAI-03, Acapulco

configuration path | 1-UIP forget restart restart | backtracks| assignments clauses| runtime

name | recording conflicts policy | increment atend
Forget-Everything n n n/a | constant 1000 6919 1137654| 36982 10.8
Path-Recording (PR y n n/a | constant 1000 6634 1082914 | 37099 11.2
PR+1UIP+Forget-Conflicts y y y | constant 1000 3654 579406 | 37417 8.4
1UIP n y n | constant 1000 2597 433470 | 39576 6.3
PR+1UIP y y n | constant 1000 2625 437258 | 39457 6.7
Forget-Everything n n n/a | doubling 1000 18482 2368821 | 36982 25.2
Path-Recording (PR y n n/a | doubling 1000 13862 1879868 | 37063 19.6
PR+1UIP+Forget-Conflicts y y y | doubling 1000 2123 352206 | 37517 5.7
1UIP n y n | doubling 1000 1319 223317 | 38299 3.0
PR+1UIP y y n | doubling 1000 1346 224185 | 38244 3.2
Forget-Everything n n n/a linear 1000 10706 1660774| 36982 16.3
Path-Recording (PR y n n/a linear 1000 7667 1150884 | 37110 11.9
PR+1UIP+Forget-Conflicts y y y linear 1000 2312 393093 | 37242 5.3
1UIP n y n linear 1000 1349 236247 | 38327 34
PR+1UIP y y n linear 1000 1345 234301 | 38241 3.3

Table 2: Comparison of restart strategies on sss1.0a dgfagestances). Mean of 10 randomized runs on the batch of 9
instances (e.g., expected runtime to solve all 9 instarespsentially)

Acknowledgments [Langley, 1992 P. Langley. Systematic and nonsystematic search
strategies. IrProc. First International Conf on Atrtificial Intelli-

This work was performed by the Jet Propulsion Laboratorjif@a gence Planning Systenysages 145-152, 1992.

nia Institute of Technology, under contract with the Na#ibAero-))
nautics and Space Administration. Thanks to Nathan Stamteand [Lynce and Marques-Silva, 20p3. Lynce and J.P. Marques-Silva.

; ; ; ; Complete unrestricted backtracking algorithms for satisfity.
Russell Knight for helpful discussions related to this work In Proc. Fifth International Symposium on the Theory and Appli

cations of Satisfiability Testingiay 2002.

References _ .
i) . [Marques-Silva and Sakallah, 1998.P. Marques-Silva and K.A.
[Baptistaet al, 2001 L. Baptista, I. Lynce, and J.P. Marques-Silva. ~ gakallah. GRASP - a new search algorithm for satisfiability.

Complete search restart strategies for satisfiability. 1J@AI Proc. IEEE/ACM International Conerence on Copmputer-dide
Workshop on Stochastic Search Algorithi2G01. Design November 1996.

[Bayardo and Schrag, 19PRoberto J. Jr. Bayardo and Robert C. [\arques-Silva and Sakallah, 1999.P. Marques-Silva and K.A.
Schrag. Using CSP look-back techniques to solve real-vébhd Sakallah. GRASP: A search algorithm for propositionalssati

instances. IfProceedings of the Fourteenth National Conference fiability. IEEE Transactions on Compute8(5):506-521, May
on Artificial Intelligence (AAAI'97)pages 203—208, Providence, 1999. '

Rhode Island, 1997. . . .
[Mitchell et al,, 1993 David G. Mitchell, Bart Selman, and Hec-
[Crawford and Auton, 1993James M. Crawford and L. D. Auton. tor J. Levesque. Hard and easy distributions for SAT problem

Experimental results on the crossover point in satisfigfpiiob- In Paul Rosenbloom and Peter Szolovits, editBrsceedings of
lems. In Richard Fikes and Wendy Lehnert, editéhmceedings the Tenth National Conference on Atrtificial Intelligengmges
of the Eleventh National Conference on Artificial Intellge 459-465. Menlo Park. California. 1992. AAA| Press.

pages 21-27, Menlo Park, California, 1993. AAAI Press.)))
. .) [Moskewiczet al, 200] M. Moskewicz, C. Madigan, Y. Zhao,
[Davis and Putnam, 19$0M. Davis and H. Putnam. A computing L. zhang, and S. Malik. "chaff: Engineering an efficient

procedure for quantification theoryournal of the ACM7:201— sat solver”. InProc. 38th Design Automation Conference
215, 1960. (DAC2001) Las Vegas, 2001.

[Daviset al, 1963 M. Davis, G. Logemann, and D. Loveland. A [gialiman and Sussman, 197R.M. Stallman and G.J. Sussman.
machine program for theorem provin@€ommunications of the Forward reasoning and dependency-directed backtrackirg i
ACM, 5:394-397, 1962. system for computer-aided circuit analysisArtificial Intelli-

[Gomeset al, 1999 Carla P. Gomes, Bart Selman, and Henry gence 9:135-196, 1977.

Kautz. Boosting combinatorial search through randonizati : : g

In Proceedings of the Fifteenth National Conference on Atrtifi- [Zhnalggca(lengfl\ggltlks,oi?gzLAZCgasr;gsﬁjndc; fsdrl\g;ilg?énﬁ?nc;}grr?;fng;i

cial Ilngtgglgence (AAAI'98) pages 431-437, Madison, WISCON- ¢ 4\00rithms. InProc. Sixth International Conference on Theory

sin, : and Applications of Satisfiability Testing (SAT2Q0Bprtofino,
[Gomeset al, 2000 Carla P. Gomes, Bart Selman, Nuno Crato, lItaly, May 2003.

and Henry A. Kautz. Heavy-tailed phenomena in satisfigbilit : :

and constraint satisfaction problendmurnal of Automated Rea- [Zhﬁggsézliézz Ogr?d Iélr:];arlgdzlt]/lz?igk’ Cé%?gg:t &?]?lli%?g’rivgt%iv&w

soning 24(1/2):67-100, 2000. in boolean satisfiability solver. IRroc. ICCAD pages 279-285,
[Hubermaret al, 1999 B.A. Huberman, R.M. Lukose, and 2001.

T. Hogg. An economics approach to hard computational prob-

lems. Science275:51-54, 1997.

WS Stochastic Search Algorithms 6 IJCAI-03, Acapulco

