
Complete Restart Strategies Using a Compact Representation of the Explored
Search Space

Alex S. Fukunaga
Jet Propulsion Laboratory

Califorrnia Institute of Technology
4800 Oak Grove Dr., M/S 126-347

Pasadena, CA 91109-8099
fukunaga@aig.jpl.nasa.gov

Abstract

Applying restarts to complete search algorithms for
constraint satisfaction is an effective method for
improving their expected performance on some dif-
ficult problems. An issue with restarts is that com-
pleteness can be lost if the algorithm is constantly
interrupted in the midst of a search. We propose
a general method for called path-recording, which
guarantees completeness for restart strategies and
requires space linear in the number of restarts and
decision variables. An example application in the
domain of propositional satisfiability testing is pre-
sented.

1 Introduction
A restart strategy is a technique by which a
search/optimization algorithm is interrupted in the midstof a
run, then restarted such that a different portion of the search
space is explored.

Restarts have long been used in the context of local search
and other incomplete search/optimization algorithms in or-
der to encourage exploration of the search space and escape
local optima. Recently, restarts have been shown to yield
dramatic performance improvements when applied to com-
plete, backtracking-based algorithms for constraint satisfac-
tion problems (CSPs), including boolean satisfiability (SAT)
[Gomeset al., 1998; 2000], enabling the solution of problems
which were previously unsolvable.

Gomes et al studied the variability in runtimes of algo-
rithms for CSPs and found that the performance of backtrack-
ing algorithms exhibits a heavy-tailed distribution[Gomeset
al., 2000]. For many “difficult” problem instances, they ob-
served that some runs of a randomized, complete solver ter-
minated very quickly, while other runs on the same instance
took a very long time. That is, the runtime of a given al-
gorithm on an instance depended not only on the problem
instance, but also on the particular random choices made by
the algorithm. By repeatedly, rapidly restarting a search al-
gorithm, it is possible to take advantage of any significant
mass in the leftmost part of this runtime distribution, i.e., even
though a problem instance might be very difficult most of the
time, a series of short runs could result in a run which “got
lucky” and solved the instance quickly.

RestartSearch(ProblemInstance)
solver-state = InitialState;
Repeat:
solver-state=BacktrackSearch(solver-state)
Until solution found or timeout

Figure 1: A restarting search strategy

Although the discovery of heavy-tailed distributions in
large-scale CSPs as a motivation for restarts is relativelynew,
the underlying problem (costly “mistakes” made by back-
tracking algorithms early on in the search tree leading to long
periods of fruitless search) has been well-known, and similar
strategies have been previously studied. For example, Hu-
berman, Hogg, and Lukose[Hubermanet al., 1997] motivate
the use of algorithm portfolios (parallel runs of search algo-
rithms applied to a single problem instance) using a similar
argument. Iterative sampling[Langley, 1992] can be viewed
as a degenerate backtracking algorithm that “restarts” after
every leaf node expansion.

The general schema for a solver using randomized restarts
is very simple, as shown in Figure 1.BacktrackSearch
is a backtracking algorithm (e.g., chronological backtrack-
ing, conflict-directed backjumping[Stallman and Sussman,
1977]), which has been modified such that based on some
restart policy, or schedule, it will interrupt the search and
return control to the top-levelRestartSearch function.
In some cases,BacktrackSearch has been modified
so that its variable/value selection strategies are random-
ized (c.f. [Gomeset al., 1998] so that repeated calls to
BacktrackSearch results in different search algorithm
behavior. In other cases, conflict clauses learned during the
previous call toBacktrackSearch can cause the search
behavior in a subsequent call to be significantly different
without any need for explicit randomization[Moskewiczet
al., 2001].

There are several issues that are introduced by applying
restarts. First, completeness is lost. Suppose we are given
an unsatisfiable CSP problem instance. A complete, back-
tracking algorithm will eventually return UNSAT. However,
if we take a standard backtracking algorithm and apply ran-
dom restarts with some arbitrary restart frequency, we are

WS Stochastic Search Algorithms 1 IJCAI-03, Acapulco



no longer guaranteed that we can prove unsatisfiability. Al-
though it may be possible for the solver to prove unsatisfiabil-
ity within a given time window between restarts, theguaran-
teeof completeness is lost, because the solver could always
end up restarting before a proof of unsatisfiability is com-
pleted.1

A second problem is the loss ofsystematicity, the property
that nodes in the tree are visited at most once. Systematicity
is at least theoretically desirable, since revisiting search states
is intuitively “inefficient”. Unfortunately, after a restart, there
is no guarantee that a state which was visited in a previous
invocation ofBacktrackSearch in Figure 1 will not be
re-examined in subsequent iterations.

One approach to guaranteeing completeness suggested in
[Gomeset al., 1998] is to use a restart schedule where the du-
ration of each run in between restarts is gradually increased,
so that eventually, the final uninterrupted, “restart” willresult
in a complete, search of the tree. A drawback of this approach
is that if the underlying solver does not use a mechanism such
as clause learning, then each restart essentially throws away
all of the work done in the previous restarts, which can be
wasteful. Note that although they proposed gradually increas-
ing cutoffs, Gomes et al actually used a constant cutoff value
between restarts[Gomeset al., 1998] because the strategy
of rapid random restarts maximizes the likelihood of hitting
a “lucky” restart (i.e., exploiting any significant mass in the
good part of the runtime distribution).

Another approach is to rely on a conflict-clause record-
ing mechanism. Some modern SAT-solvers such asChaff
[Moskewicz et al., 2001], GRASP [Marques-Silva and
Sakallah, 1999], andrelsat [Bayardo and Schrag, 1997] in-
corporate a learning mechanism that adds new clauses to
the clause set. Usually, these solvers implement a policy
which periodically eliminate some of the learned clauses
based on the age and/or “relevance” of the clauses. Lynce
and Marques-Silva[2002] show that if all recorded clauses
are kept between restarts, or if a policy gradually caused all
clauses to be kept (e.g., by gradually increasing the size-
bound or relevance-bound of the retained clauses) then then
completeness can be guaranteed. A problem with this second
approach is that for a large enough problem instance, it will
be impractical to keep all clauses for the duration of the run
without running out of memory/storage. In addition, at some
point, the overhead introduced by the presence of all learned
clauses can slow down the search algorithm.

A third approach proposed by Baptista, Lynce and
Marques-Silva[2001] for a SAT solver based on conflict-
directed backjumping is to use asearch signaturethat sum-
marizes the subtree that has been explored prior to a restart.
The search signature is a set of clauses added to the formula
during conflict-directed backtracking representing the based
on thecauses[Marques-Silva and Sakallah, 1996] for back-
tracking of the variables representing the current search path.
Search signatures use significantly less memory than keeping

1The same problem exists for satisfiable problems, but it is more
likely to be a problem for unsatisfiable problems because in general,
solving unsatisfiability requires proving that the whole tree does not
contain a solution.

all clauses learned by conflict analysis.
In the rest of this paper, we proposepath-recording, an al-

ternate approach based on compactly representing the por-
tions of the search space that have already been explored.
Path-recording is similar to search signatures, but is more
general, in that it is an extension to backtracking, and is to-
tally independent of any conflict analysis mechanism. Be-
cause it depends only structure of the search tree, it can be
applied to any backtracking-based algorithm. We show how
path-recording can be implemented for satisfiability testing,
and report some preliminary empirical results that show that
path-recording can be used to improve the performance of
backtracking satisfiability solvers with restarts.

2 Path-Recording
We now propose a simple method which restores both com-
pleteness, and (to some extent) systematicity to randomized
restart algorithms, at very little cost. The key insight is that is
possible to exploit the structure of the search trees explored
by backtracking algorithms in order to compactly and quickly
recordwhich portions of the search tree have already been ex-
plored in the form of new constraints. These constraints are
added to the system in such a way as to prevent the search
algorithm from re-visiting the states encoded by these con-
straints.

The technique will first be demonstrated using a simple ex-
ample.

Suppose we have a SAT instance with 4 variables,
A, B, C, D.

Assume a standard chronological backtracking algorithm
(i.e., depth-first search) that searches the space of variable-
value assignments. For simplicity, assume that conflicts are
not detected until all variables are assigned a value, i.e.,there
is no constraint propagation. Furthermore, assume that vari-
ables are selected in lexicographic order, and values are as-
signed in an arbitrary order (firstT is tried, thenF ).

The algorithm will start at the root (all variables unas-
signed). First, the algorithm assignsA = T . Then it would
assignB = T , thenC = T , thenD = T . At this point,
having failed to find a solution, it would backtrack onD and
assign it a value ofF . If that fails, it would backtrack onD
andC, assigningF to C andT to D.

Using an abbreviated notation, this can be described as:
A = T, B = T, C = T, D = T ; fail; backtrack onD.
A = T, B = T, C = T, D = F ; fail; backtrack onD, then

backtrack onC.
...and so on, until either a solution is found or we reach the
state:A = F, B = F, C = F, D = F , at which point the
search tree is exhausted and we return UNSATISFIABLE.

Figure 2 illustrates a partially completed search tree for this
example.

Now, suppose that the search is interrupted after the eval-
uation of the state:A = T, B = F, C = T, D = F . That
is, a restart is triggered after the 6th leaf node from the left in
Figure 2 is expanded.

We can inspect Figure 2 and try to summarize the nodes
that have been expanded so far. The nodes that have already
been expanded are exactly the nodes to the left of thecurrent

WS Stochastic Search Algorithms 2 IJCAI-03, Acapulco



Figure 2: Partial search tree for a backtracking SAT solver

BacktrackSearch(Vars)
If solution-found
Return solution
v= Select a variable from Vars
for each value a in Domain(v)
Assign(Vars=a)
DecisionStack.push front(pair(v,a))
BacktrackSearch(Vars-v)
DecisionStack.pop front()
Return failure (no solution)

Figure 3: Example backtracking algorithm with an explicitly
maintained decision stack

path(the sequence of decisions marked by the dark lines). It
should be clear that we have proven that any state with the
partial assignmentA = T, B = T have been completely ex-
hausted. Thus, we can conclude:¬(A∧B). Similarly, we can
also conclude¬(A∧¬B∧C∧¬D). Therefore, the constraint
(in conjunctive normal form) which exactly summarizes the
subtree which has been explored so far (and proven not to
have a solution) is(¬A ∨ ¬B) ∧ (¬A ∨ B ∨ ¬C ∨ ¬D) The
two clausesC1 = (¬A∨¬B) andC2 = (¬A∨B∨¬C∨¬D))
are added to the original formula.

Now, consider what happens after a restart. If we ever
reach a partial assignment which setsA = T, B = T , then
C1 is violated, forcing a backtrack.

From this example, we can see intuitively that summariz-
ing the explored portion of the search space requires us to
record one clause for every right-branch taken by the current
path. We now present the path recording algorithm.

Let thedecision stackbe a listd1, d2, ..dn which encodes
the decisions made in the search tree.

Figure 3 shows a chronological backtracking algorithm
which maintains a decision stack. Thepushandpop oper-
ators add and remove assignments to the decision stack.

When a restart takes place, the solver invokes the

ProcessPath(path remaining,path-above)
Decision = Pop from back(path remaining)
If Decision = right branch
C = NewClause()
Add Literal(C,Decision)
For each Decision in Path Above
Add Literal(C,Opposite(Decision))

Add Clause To Clause Database(C)
ProcessPath(path remaining,

path-above+Decision)

Figure 4: A Path-Recording algorithm for SAT

ProcessPath algorithm (Figure 4). The call to
ProcessPath(CurrentPath,NULL) adds the neces-
sary clauses required to record the portion of the search space
explored in this current invocation of the backtracking algo-
rithm.

The number of clauses learned by path recording after each
restart is linear inV , the number of decision variables. More
precisely, it is no more than the number of right-branches in
the current path. Thus, afterR restarts, there will be at most
RV new clauses. In addition, there is a small,O(V ) space
requirement for maintaining the current path.

The call to ProcessPath(CurrentPath) clearly
takesO(length(CurrentPath)) time, which isO(V ), lin-
ear in the number of decision variables. Since ProcessPath
only needs to be called just before a restart, the overhead in-
troduced into the overall solver will be negligible, assuming
that restarts are relatively infrequent.

The other overhead is incurred when adding/removing de-
cisions to the current path (Figure 3). However, both of these
operations can be done in constant time per decision if the
current path is implemented as a stack. Profiling the SAT
solver used for our experiments in Section 3 showed that this
overhead is negligible.

The above model and examples assumed a very sim-
ple depth-first backtracking algorithm with static (lexicogo-
raphic) variable and value orderings. However, it is easy to
see that even with more sophisticated variable/value order-
ing, path-recording still retains completeness. Also, theusual
extensions to backtracking such as constraint propagationand
conflict-directed backjumping do not affect its correctness.

Also, in our examples we assumed that the restart took
place immediately after some leaf node was opened. Path-
recording is correct even if the restart takes place in an in-
terior node of the search tree, because the nodes which are
eliminated from future consideration correspond to the leaf
nodes to the left of wherever the current path is.

The above algorithm for propositional SAT can be gener-
alized in a straightforward manner for arbitrary trees. Figure
5 shows part of a search tree for a problem on a tree with
branch factor three (e.g., a constraint satisfaction problem
where variables are assigned one of 3 possible values). Given
the current path marked by the dark line, the constraints to be
added in this case are:

WS Stochastic Search Algorithms 3 IJCAI-03, Acapulco



Figure 5: Partial search tree for a backtracking algorithm ap-
plied to a 3-valued search problem

¬(A = 1),
¬((A = 2 ∧ B = 1) ∨ (A = 2 ∧ B = 2)),
¬((A = 2∧B = 3∧C = 1)∨ (A = 2∧B = 3∧C = 2))

3 Empirical Study: SAT
We now empirically study path-recording applied to the do-
main of SAT. Backtracking algorithms based on the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm[Davis and
Putnam, 1960; Daviset al., 1962] represent the current state
of the art in complete, SAT solvers. Gomes et al extended
two systematic DPLL solvers,satzand relsat, with random
restarts and found significantly improved performance com-
pared to the complete, deterministic original versions on
some problem instances. Random restarts are now com-
monly used in modern DPLL-based solvers such asChaff
[Moskewiczet al., 2001].

We implemented a systematic, DPLL based SAT-solver. It
uses conflict-directed backjumping, 1-UIP clause learning,
and the VSIDS variable selection heuristic as implemented
in zChaff[Zhanget al., 2001]. The current implementation
is a prototype, lacking several features found in state-of-the-
art solver implementations. It uses a counter-based scheme
for unit propagation[Crawford and Auton, 1993] rather than
a watched literal scheme, and we have made no attempt to
optimize data structures for cached memory accesses; both
of these was found to have a significant impact on perfor-
mance[Moskewiczet al., 2001; Zhang and Malik, 2003]. Fi-
nally, our solver is implemented in Common Lisp with only
moderate hand-coded optimizations (e.g., type declarations,
user-level memory management), which imposes some per-
formance penalties for the sake of enabling rapid prototyping.
Nevertheless, the overall performance of our solver seems to
be competitive with reasonably efficient solvers such asrel-
sat. All of our experiments were performed on a 2.78GHz
Intel Pentium 4, 512K L2 cache, and 1GB memory.

As a further optimization which exploits path-recording,
a simple subsumed-clause elimination scheme was imple-

mented. A clausec is subsumed by anotherc1 if the liter-
als in c are a strict subset of the literals inc1. For example,
(a ∨ b ∨ ¬c) is subsumed by(a ∨ ¬c). Note that ifc1 sub-
sumesc, thenc is redundant and can be removed from the
database without affecting the search algorithm behavior.Re-
moving subsumed clauses can speed up the search (by remov-
ing the overhead associated with maintaining the subsumed
clauses in the clause database). During a restart, when the
path clauses are added to the database, all previously existing
clauses are compared to the path clauses, and any subsumed
clauses which are found are removed from the database.

When restarting, the solver uses the algorithm described
in Section 2 and adds the derived path clauses to the clause
database.

We tested the following configurations:

• Forget-everything

• Path-Recording (PR)

• PR+1UIP+Forget-Conflicts

• PR+1UIP

• 1UIP

These configurations are composed of different combina-
tions of three clause learning and forgetting strategies, as
shown in Tables 1 and 2.Path recordingindicates whether
path recording was turned on.1-UIP indicates the use of
the 1-UIP conflict-based learning algorithm.Forget conflicts
indicates that even when 1-UIP was activated, all conflict
clauses were deleted during each restart. Thus, in our ex-
periment, conflict clauses are either not learned at all, learned
and never forgotten, or deleted after each restart. We have
not yet experimented with various policies for periodically re-
moving clause databases,such as relevance-based, age-based,
and length-based policies (c.f.[Bayardo and Schrag, 1997;
Zhanget al., 2001]).

Two sets of test formula were used: The first set was a
set of 150 variable, 615-clauseunsatisfiableformula (100
instances) from the uuf150 benchmark set at thesatlib
(www.satlib.org) database (hard, random unsatisfiable in-
stances from the phase transition region[Mitchell et al.,
1992]). The second set was the Superscalar Suite 1.0a bench-
mark set (9 instances, all satisfiable) by Miroslav Velev, avail-
able at http://www.ece.cmu.edu/ mvelev.

Three restart policieswere used, all of them using a
increment parameter:

• constant- restarts everyincrement backtracks.

• doubling - The nth restart occurs afterinterval × 2n

backtracks. E.g., ifinterval=100, restarts occur at 100,
200, 400, 800, 1600...backtracks.

• linear - The first restart occurs atOriginalInterval =
increment backtracks. The next restart occursn ×

increment backtracks after the current restart. E.g., if
OriginalInterval=100, then restarts occur at 100, 300,
600, 1000, 1500... backtracks.

Tables 1 and 2 and summarizes the results. The “clauses
at end” column indicates the numbe of clauses in the clause
database at the end of each run, including all clauses learned
by 1-UIP and path-recording. We observe that:

WS Stochastic Search Algorithms 4 IJCAI-03, Acapulco



configuration path 1-UIP forget restart restart backtracks assignments clauses runtime
name recording conflicts policy increment at end

Forget-Everything n n n/a constant 1000 no successes
Path-Recording (PR) y n n/a constant 1000 18510 610789 809 4.96

Forget-Everything n n n/a constant 100 no successes
Path-Recording (PR) y n n/a constant 100 20024 656354 1917 7.90

PR+1UIP+Forget-Conflicts y y y constant 100 12951 431668 1458 5.52
1UIP n y n constant 100 8203 276376 8766 10.50

PR+1UIP y y n constant 100 8201 278132 1950 8.98
Forget-Everything n n n linear 100 97724 3235352 645 25.41

Path-Recording (PR) y n n linear 100 17384 575339 798 4.74
PR+1UIP+Forget-Conflicts y y y linear 100 9365 318631 1398 3.79

1UIP n y n linear 100 7861 267469 8493 7.15
PR+1UIP y y n linear 100 7922 270536 3415 6.52

Forget-Everything n n n doubling 100 29040 961636 645 7.50
Path-Recording (PR) y n n doubling 100 17313 571734 709 4.64

PR+1UIP+Forget-Conflicts y y y doubling 100 8703 297254 3106 4.70
1UIP n y n doubling 100 7952 270652 8590 7.94

PR+1UIP y y n doubling 100 8027 273136 5033 6.60

Table 1: Comparison of restart strategies on 150 variable, 645 clause unsatisfiable formulas (100 instances from the uuf150
dataset atsatlib). Mean ove100 instances. (Timeout after 100000 backtracks)

• The utility of path-recording depends on the class of
problem instance, as well algorithmic features (e.g.,
restart strategy, whether clause-learning was enabled).

• When 1-UIP is not used, path-recording significantly
improves performance over not learning anything at all.

• When 1-UIP is used, path-recording does not signifi-
cantly reduce the number of backtracks, but eliminating
conflict clauses subsumed by the recorded path results in
a smaller clause database, resulting in somewhat faster
runtime than 1-UIP alone.

For the constant restart schedule, PR+1UIP+Forget-
Conflicts outperformed pure path-recording. However, in Ta-
ble 1, it is worth noting that path-recording by itself is suffi-
cient to allow all of the instances to be solved, even though
none of the Forget-Everything runs succeeded in proving
unsatisfiability of the formulas within the backtrack bound
(100,000 total backtracks) bound, for anincrement value of
either 100 or 1000. This demonstrates a case where the risk
of applying a rapid restart strategy is mitigated by restoring
completeness using path-recording.

4 Discussion
We described path-recording, an algorithm for generating
constraints summarizing the subtrees explored by a back-
tracking algorithm. Path-recording can be implemented as an
extension to most backtracking algorithms for constraint sat-
isfaction and optimization. Preliminary experiments indicate
that it can help the performance of a restarting, SAT-solver.
For any particular domain, there will be tradeoffs between 1)
the benefits of completeness and limited systematicity offered
by the technique, and 2) the overhead associated with gener-
ating and representing these new constraints.

Path-recording is quite similar to the search signature tech-
nique proposed by Baptista et al[2001]. The main idea of
remembering sufficient constraints to summarize the subtree

that has just been searched is the same. The main difference
is that path-recording generalizes this key idea and presents
and implements it in a framework completely independent of
conflict-directed backtracking. As a result, it can be applied
to many other domains to which systematic tree-search algo-
rithms can be applied.

In addition to its application to restarts, the path-recording
technique can be used to share/broadcast the exhausted re-
gions of the search space among processes in an algorithm
portfolio or distributed problem-solving system. For exam-
ple, if two backtracking-based solvers are executed in parallel
on the same problem instance, they can succinctly commu-
nicate to each other which regions of the search space have
already been exhausted, without having to explicly list every
single state that has been explored.

Although we have focused on constraint satisaction, path-
recording can be applied to other tree-search domains. For
example, in branch-and-bound algorithms for optimization
(e.g., traveling salesperson), path-tracking can be used to en-
able restarts without losing completeness and systematicity.
This will allow short, rapid “probes” of the search space in
order to try to quickly obtain good upper bounds that can be
used to increase pruning and decrease the overall search ef-
fort. However, in some of these domains, the overhead in-
curred by adding the constrain-checking infrastructure nec-
essary to enable path-recording may overwhelm the poten-
tial reduction in search effort, while in CSP domains such
as SAT, there is very little additional overhead incurred by
path-recording because efficient representation of constraints
is already a necessary part of state-of-the-art solvers. An-
other promising application seems to be branch-and-bound
algorithms for integer programming, which, like CSPs, read-
ily supports the insertion of new constraints derived by path-
recording.

WS Stochastic Search Algorithms 5 IJCAI-03, Acapulco



configuration path 1-UIP forget restart restart backtracks assignments clauses runtime
name recording conflicts policy increment at end

Forget-Everything n n n/a constant 1000 6919 1137654 36982 10.8
Path-Recording (PR) y n n/a constant 1000 6634 1082914 37099 11.2

PR+1UIP+Forget-Conflicts y y y constant 1000 3654 579406 37417 8.4
1UIP n y n constant 1000 2597 433470 39576 6.3

PR+1UIP y y n constant 1000 2625 437258 39457 6.7
Forget-Everything n n n/a doubling 1000 18482 2368821 36982 25.2

Path-Recording (PR) y n n/a doubling 1000 13862 1879868 37063 19.6
PR+1UIP+Forget-Conflicts y y y doubling 1000 2123 352206 37517 5.7

1UIP n y n doubling 1000 1319 223317 38299 3.0
PR+1UIP y y n doubling 1000 1346 224185 38244 3.2

Forget-Everything n n n/a linear 1000 10706 1660774 36982 16.3
Path-Recording (PR) y n n/a linear 1000 7667 1150884 37110 11.9

PR+1UIP+Forget-Conflicts y y y linear 1000 2312 393093 37242 5.3
1UIP n y n linear 1000 1349 236247 38327 3.4

PR+1UIP y y n linear 1000 1345 234301 38241 3.3

Table 2: Comparison of restart strategies on sss1.0a dataset (9 instances). Mean of 10 randomized runs on the batch of 9
instances (e.g., expected runtime to solve all 9 instances sequentially)

Acknowledgments
This work was performed by the Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under contract with the National Aero-
nautics and Space Administration. Thanks to Nathan Sturtevant and
Russell Knight for helpful discussions related to this work.

References
[Baptistaet al., 2001] L. Baptista, I. Lynce, and J.P. Marques-Silva.

Complete search restart strategies for satisfiability. InIJCAI
Workshop on Stochastic Search Algorithms, 2001.

[Bayardo and Schrag, 1997] Roberto J. Jr. Bayardo and Robert C.
Schrag. Using CSP look-back techniques to solve real-worldSAT
instances. InProceedings of the Fourteenth National Conference
on Artificial Intelligence (AAAI’97), pages 203–208, Providence,
Rhode Island, 1997.

[Crawford and Auton, 1993] James M. Crawford and L. D. Auton.
Experimental results on the crossover point in satisfiability prob-
lems. In Richard Fikes and Wendy Lehnert, editors,Proceedings
of the Eleventh National Conference on Artificial Intelligence,
pages 21–27, Menlo Park, California, 1993. AAAI Press.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A computing
procedure for quantification theory.Journal of the ACM, 7:201–
215, 1960.

[Daviset al., 1962] M. Davis, G. Logemann, and D. Loveland. A
machine program for theorem proving.Communications of the
ACM, 5:394–397, 1962.

[Gomeset al., 1998] Carla P. Gomes, Bart Selman, and Henry
Kautz. Boosting combinatorial search through randomization.
In Proceedings of the Fifteenth National Conference on Artifi-
cial Intelligence (AAAI’98), pages 431–437, Madison, Wiscon-
sin, 1998.

[Gomeset al., 2000] Carla P. Gomes, Bart Selman, Nuno Crato,
and Henry A. Kautz. Heavy-tailed phenomena in satisfiability
and constraint satisfaction problems.Journal of Automated Rea-
soning, 24(1/2):67–100, 2000.

[Hubermanet al., 1997] B.A. Huberman, R.M. Lukose, and
T. Hogg. An economics approach to hard computational prob-
lems.Science, 275:51–54, 1997.

[Langley, 1992] P. Langley. Systematic and nonsystematic search
strategies. InProc. First International Conf on Artificial Intelli-
gence Planning Systems, pages 145–152, 1992.

[Lynce and Marques-Silva, 2002] I. Lynce and J.P. Marques-Silva.
Complete unrestricted backtracking algorithms for satisfiability.
In Proc. Fifth International Symposium on the Theory and Appli-
cations of Satisfiability Testing, May 2002.

[Marques-Silva and Sakallah, 1996] J.P. Marques-Silva and K.A.
Sakallah. GRASP - a new search algorithm for satisfiability.In
Proc. IEEE/ACM International Conerence on Copmputer-Aided
Design, November 1996.

[Marques-Silva and Sakallah, 1999] J.P. Marques-Silva and K.A.
Sakallah. GRASP: A search algorithm for propositional satis-
fiability. IEEE Transactions on Computers, 48(5):506–521, May
1999.

[Mitchell et al., 1992] David G. Mitchell, Bart Selman, and Hec-
tor J. Levesque. Hard and easy distributions for SAT problems.
In Paul Rosenbloom and Peter Szolovits, editors,Proceedings of
the Tenth National Conference on Artificial Intelligence, pages
459–465, Menlo Park, California, 1992. AAAI Press.

[Moskewiczet al., 2001] M. Moskewicz, C. Madigan, Y. Zhao,
L. Zhang, and S. Malik. ”chaff: Engineering an efficient
sat solver”. In Proc. 38th Design Automation Conference
(DAC2001), Las Vegas, 2001.

[Stallman and Sussman, 1977] R.M. Stallman and G.J. Sussman.
Forward reasoning and dependency-directed backtracking in a
system for computer-aided circuit analysis.Artificial Intelli-
gence, 9:135–196, 1977.

[Zhang and Malik, 2003] L. Zhang and S. Malik. Cache perfor-
mance of sat solvers: A case study for efficient implementation
of algorithms. InProc. Sixth International Conference on Theory
and Applications of Satisfiability Testing (SAT2003), Portofino,
Italy, May 2003.

[Zhanget al., 2001] Lintao Zhang, Conor F. Madigan, Matthew W.
Moskewicz, and Sharad Malik. Efficient conflict driven learning
in boolean satisfiability solver. InProc. ICCAD, pages 279–285,
2001.

WS Stochastic Search Algorithms 6 IJCAI-03, Acapulco


