
Evolving Nonlinear Predictive Models for Lossless

Image Compression with Genetic Programming

Alex Fukunaga and Andre Stechert

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Dr., M/S 126-347

Pasadena, CA 91109-8099
alex.fukunaga@jpl.nasa.gov, andre.stechert@jpl.nasa.gov

ABSTRACT
We describe a genetic pro-

gramming system which learns
nonlinear predictive models for
lossless image compression. S-
expressions which represent
nonlinear predictive models are
learned, and the error image
is compressed using a Huff-
man encoder. We show that
the proposed system is capable
of achieving compression ratios
superior to that of the best
known lossless compression al-
gorithms, although it is signifi-
cantly slower than standard al-
gorithms.

1 Introduction
Lossless image compression is a problem with many
real-world applications which has been studied by
many researchers. The current dominant paradigm
for lossless compression is predictive coding. State
of the art lossless image compression algorithms
(based on predictive coding) include the CALIC al-
gorithm of Wu and Memon [WM97] and the LOCO-
I algorithm of Weinberger et al. [WSS96]. Re-
views of lossless image compression can be found
in [MW96, MW97].

This paper proposes the use of genetic program-
ming (GP) [Koz92] in lossless image compression as
the mechanism for representing and learning non-
linear models for predictive coding. Because of the

enormous computational cost of evolving nonlinear
predictive models would be prohibitively expensive
using standard GP systems, we have implemented a
highly efficient, genome-compiler GP system which
compiles s-expressions into native machine code to
enable the application of GP to this problem.

We evaluate our GP-based compression system
by comparison with the state of the art lossless im-
age compression algorithms and show that it is pos-
sible to obtain compression ratios superior to the
best known algorithms.

The rest of the paper is organized as follows. In
Section 2, we review predictive coding based im-
age compression. Section 3 describes the GP-based
compression system. Section 4 presents an empir-
ical evaluation of our system using some test im-
ages, and compares the results with that of the best
known lossless compression algorithms. We discuss
related work in Section 5, and we conclude in Sec-
tion 6 with a discussion and directions for future
work.

2 Predictive Coding Based
Image Compression

Predictive coding (Figure 2) is an image compression
technique which uses a compact model of an image
to predict pixel values of an image based on the val-
ues of neighboring pixels. A model of an image is a
function model(x, y), which computes (predicts) the
pixel value at coordinate (x, y) of an image, given
the values of some neighbors of pixel (x, y), where
neighbors are pixels whose values are known. Typi-
cally, when processing an image in raster scan order

1

Raw Image Model

Predicted Image

Error Image

Compressed Image

Entropy Coder
(e.g., Huffman
Coding)

Predictor

-

Figure 1 Predictive Coding Based Compression

(left to right, top to bottom), neighbors are selected
from the pixels above and to the left of the cur-
rent pixel. For example, a common set of neighbors
used for predictive coding is the set {(x-1,y-1), (x,y-
1), (x+1,y-1),(x-1,y)}. Linear predictive coding is a
simple, special case of predictive coding in which
the model simply takes an average of the neigh-
boring values. Nonlinear models assign arbitrarily
complex functions to the models.

Suppose that we have a perfect model of an im-
age, i.e., one which can perfectly reconstruct an
image given the pixel value of the border pixels
(assuming we process the pixels in raster order).
Then, the value of the border pixels and this com-
pact model is all that needs to be transmitted in
order to transmit the whole information content of
the image. In general, it is not possible to gener-
ate a compact, perfect model of an image, and the
model generates an error signal (the differences at
each pixel between the value predicted by the model
and the actual value of the pixel in the original im-
age.

There are two expected sources of compression in
predictive coding based image compression (assum-
ing that the predictive model is accurate enough).
First, the error signal for each pixel should have a
smaller magnitude than the corresponding pixel in

the original image (therefore requiring fewer bits to
transmit the error signal). Second, the error signal
should have less entropy than the original message,
since the model should remove many of the “princi-
pal components” of the image signal.1 To complete
the compression, the error signal is compressed us-
ing an entropy coding algorithm such as Huffman
coding or arithmetic coding [NG96]. State of the
art algorithms such as CALIC also perform con-
text modeling prior to applying entropy coding –
see [MW96, MW97]. Our system does not apply
context modeling techniques.

If we transmit this compressed error signal as well
as the model and all other peripheral information,
then a receiver can reconstruct the original image
by applying an analogous decoding procedure (see
Figure 2).

3 Evolving Nonlinear Predic-
tive Models with a GP

We developed a GP system which, given an image,
compresses the image by evolving a nonlinear pre-
dictive model for the image. The nonlinear model
is represented as a s-expression.

1If the model were perfect, then the error signals would
consist of all 0’s, and could be compressed to a few bytes.

Encoder(Model,Image)
for x = 0 to xmax

for y = 0 to ymax
Error[x,y] = Image[x,y] - Model(x,y)

Decoder(Model)
for x = 0 to xmax

for y = 0 to ymax
Image[x,y] = Model(x,y) + Error[x,y]

Figure 2 Algorithm schema for en-
coding/decoding in predictive coding.
Model(x, y) is a function that takes the co-
ordinates of a pixel and returns a predicted
value of that pixel. Image and Error are
two-dimensional arrays.

The terminals used for genetic programming
were:

• values of the four neighboring pixels Image[x-
1,y-1], Image[x,y-1], Image[x+1,y-1], Image[x-
1,y].

• selected constant values: 1, 5, 10, 100.

The functions used were:

• arithmetic functions: +,-,*,% (protected divi-
sion [Koz92])

• MIN(a,b) and MAX(a,b) functions which re-
turn the minimum and maximum values of
their two arguments, respectively.

As we noted in Section 2, a standard entropy
coding algorithm needs to be applied to the error
image. For this experiment, we used the Huffman
coder described in Section 3.2. Note that the code-
book (which is the mapping from pixel values to the
prefix codes used by the Huffman coder) needs to
be output in the compressed image file.

In addition, given the four pixel neighborhood we
use, the pixel values of the borders of the image, i.e.,
the top row, the leftmost column, and the rightmost
column need to be stored explicitly (these are the
border cases for which we can not apply the predic-
tive model). Also, the model (which is unique for
each image) must also be stored in the compressed
image data. We applied Unix compress (which uses
Lempel-Ziv coding) to the border pixels and the

model, and concatenated these to the Huffman-
coded error signal. Finally, two integer values in-
dicating the size of the image (height,width) were
added to the file. Given this data, we can recon-
struct an image without loss of information.

Thus, the exact file size of the compressed image
(the values reported in the experiments below) is:
sizeof(HuffmanCodedError) +
sizeof(HuffmanCodeBook)+
sizeof(CompressedBorder) +
sizeof(CompressedModel) + sizeof(2 integers)

The size of the codebook depends on the number
of unique values in the error image. Because the
s-expression models are unconstrained in the range
of values that they can return, the worst-case size of
the codebook is actually the number of pixels in the
image, even though there are only 256 unique pixel
values in the original image. To enable fast entropy
coding (Section 3.2), we have actually limited the
codebook size to 216 = 65536 entries (the 32-bit in-
tegers returned by the s-expression are stored mod-
ulo 216). This means that the size of the codebook
can possibly become a very significant component of
the compressed data that must be transmitted. We
therefore implemented a execution speedup heuris-
tic which abandons evaluation of an individual once
the number of unique error image pixel values gen-
erated exceeds either some constant value (we used
40000 in the experiments below) or 25% of the total
number of pixels in the input image. By doing this,
we avoid the cost of running the entropy coder for
individuals that both a) look very unpromising and
b) will be extremely computationally expensive to
evaluate.

In the experiments described in Section 4, our
GP system was configured as follows: popula-
tion=500, generations=30, tournament selection
(size=5), 90% crossover, 10% reproduction, no mu-
tation).

3.1 Genome Compiler
In order to evaluate a single individual, the s-
expression needs to be evaluated for each pixel in
the image (excluding the borders). This requires
hundreds of thousands to millions of repeated exe-
cution of the same s-expression per evaluation. We
originally implemented the image compression ap-
plication using lil-gp 1.1 [PZ96], a well-known, ef-
ficient C implementation of GP. For a single GP
run with a 2000 member population executed for 50
generations on a 296MHz Ultrasparc 2, compression

of of a 256 by 256 image took two weeks. Not only
was this much too slow for practical use, it made ex-
perimentation infeasible. Thus, we sought to make
individual evaluations as efficient as possible.

We therefore extended lil-gp by implementing a
genome compiler which translates s-expressions into
efficient SPARC machine code prior to execution.
The major benefit of compilation is the removal of
function call overhead during the s-expression tree
evaluation, which we found was responsible for the
vast majority of the computation time in the stan-
dard lil-gp based system. Figure 3 shows an exam-
ple of this compilation process.

+

*

x x

-

x x1 2

3

mov fp31, fp0
mov fp31, fp1
mult fp0, fp1, fp0
mov fp31, fp1
mov fp31, fp2
sub fp1, fp2, fp1
add fp0, fp1, fp0

1

2
3

Figure 3 Example of s-expression compi-
lation: An s-expression with corresponding
assembly-level code. Numbered breaks in
the code correspond to the code generated
so far when the post order traversal has pro-
gressed to the node indicated in the tree di-
agram.

The genome compiler’s performance,2 when ap-
plied to problems where individuals are repeated
many times, compares favorably with the fastest re-
ported GP systems, including the CGPS system of
Nordin and Banzhaf [NB95], which directly manip-
ulates SPARC machine code, yielding roughly two
orders of magnitude speedup over lil-gp on symbolic
regression problems.

Further details about the genome compiler can be
found in another paper in this conference proceed-
ings [FSM98].

3.2 Entropy Coding Estimation
The evaluation of a single candidate model requires
both the generation of an error image and an esti-
mation of the size of the compressed image, based
on the error image.

After the implementation of the genome compiler
described above, we found that the vast majority
(98% for 256x256 images) of the execution time was
being spent in the Huffman coding module.3 Note
that during evolution, we only need to estimate the
size of the Huffman coded error image, as well as the
size of the codebook – there is no need to actually
generate the Huffman coded error image. Gener-
ating the coded error image requires that we iter-
ate through the image, applying the codebook to
each value, and then outputting the value of the
codebook which corresponds to each value. Because
this involves numerous bit-level operations per im-
age value, this adds a significant overhead.

Thus, we implemented a Huffman code size esti-
mator, which, during evolution, only generates the
codebook while counting the frequencies of the val-
ues in the error image. This allows us to compute
the size of the compressed error image and the code-
book without the overhead of actually compress-
ing the error image. This approach resulted in a
very significant reduction of execution time. Cur-
rently, the Huffman coding related operations con-
sumes only 50% of the execution time during evo-
lution.of a 256x256 image, and has resulted in an
overall speedup of 25 over the previous entropy cod-
ing approach.

For a 256 by 256 image, our current implemen-
tation completes a GP run involving 25000 evalua-

2By which we mean the comparative speed in time to
execute a GP run over standard C implementations of GP
such as lil-gp[PZ96] and SGPC [TC93] running on the same
problem on the same machine as the genome compiler.

3Originally, we were using a Huffman encoder found in
the standard Numerical Recipes library [PTVF92].

tions in approximately 2 hours on a 296MHz Ultra-
sparc 2 (this previously took 2-3 days before imple-
mentation of Huffman code size estimation).

Previous work which optimized predictive cod-
ing models have used the entropy4 of the error im-
age, instead of directly trying to estimate the com-
pressed filesize as we did. Although entropy pro-
vides a fast, reasonable approximation of an en-
coded filesize, the size of the codebook is not ac-
counted for by the entropy computation. Because
we use 16-bit error image values, the size of the
codebook is potentially a significant component of
the compressed filesize. Furthermore, we found that
our Huffman code size estimator was as fast as the
entropy computation for the images we tested (up
to 1024 by 1024).5

4 Results
The genetic programming system for evolving mod-
els for predictive coding lossless image compression
was evaluated by comparing the size of the com-
pressed files with a number of standard lossless com-
pression algorithms on a set of grey scale images.
The images used were science images of planetary
surfaces taken from the NASA Galileo Mission im-
age archives (we used these images because these
are of greatest interest to our sponsor). Note that
in this report, we focus on grey scale images, but
there is a straightforward extension a color imple-
mentation by operating on the three image planes
independently – this is what many state of the art
algorithms such as CALIC do.

The compression results of the following algo-
rithms are shown in Table 1.

• evolved: The evolved predictive coding com-
pression algorithm

• CALIC: A state of the art lossless image com-
pression algorithm, described in [WM97]. In
general, this algorithm provides the best com-
pression ratio among previous algorithms.

4The information-theoretic entropy of the error image can

be computed as E =
∑N

i=1
log(freq(i)), where N is the

number of unique symbols in the error image, and freq(i) is
the frequency of the ith symbol.

5Even though the asymptotic complexity of the Huffman
code size estimator for an input of length N is O(NlogN), the
entropy coder, whose complexity is O(N), has large constant
factor cost because of the computations of logarithms. Thus,
we found that the entropy coder is not significantly faster
than the Huffman code estimator for images sizes that we
tested.

• LOCO-I: This is an algorithm developed by
Weinberger et al. [WSS96], which was re-
cently selected as the new ISO JPEG-LS (loss-
less JPEG) baseline standard.

• gzip, compress, pack: These are standard
Unix string compression utilities; gzip imple-
ments the Lempel-Ziv (LZ77) algorithm, com-
press implements the adaptive Lempel-Ziv-
Welch (LZW) algorithm, and pack uses Huff-
man coding.

• szip: A software simulation of the Universal
Source Encoding for Science Data (USES) al-
gorithm [VYL92, YRM93, RYM93, Cen93], a
standard lossless compression hardware used
by NASA (This is sometimes referred to as the
Rice Chip).6

It important to note that a different model is
evolved for each image that the genetic program-
ming system is applied to. In contrast, the other ap-
proaches (CALIC, GIF, etc.) apply a single model
to every image. Thus, the time to compress an im-
age using the genetic programming approach is sev-
eral orders of magnitude greater than the time it
takes to compress an image using other methods.
However, the time to decompress an image is com-
petitive with other methods. Therefore, the genetic
programming system is an example of an asymmet-
ric compression algorithm (slow compression, fast
decompression).

As Table 1 shows, the compressed file sizes ob-
tained using the GP-evolved models is superior to
all of the other algorithms for these test images.

5 Related Work
Salami developed part of an evolvable hardware sys-
tem for lossless image compression [SIH97]. They
used a genetic algorithm to evolve weights for a lin-
ear predictor for predictive coding, and showed that
the entropy of the error image for some test images
was lower than that of CALIC and LOCO (the er-
ror image entropy was measured instead of the com-
pression ratio, since they did not implement an en-
tropy coder).

Our work differs from that of [SIH97] in two re-
spects. First, their approach is more sophisticated:
while we evolve a single model for each image, they

6For each image, the file sizes generated by the best com-
mand line configuration of szip is reported.

Image name original size evolved CALIC LOCO-I (JPEG-LS) compress gzip pack szip
earth 72643 30380 31798 32932 42502 40908 55068 40585

earth4-128 11246 5513 5631 5857 7441 6865 8072 7727
earth6 20400 9288 10144 10488 11339 10925 13264 12793
earth7 21039 10218 11183 11476 13117 12520 15551 13269
earth8 19055 9594 10460 10716 11699 11350 13298 12465

Table 1 Compression results (in bytes) of various compression techniques applied to set of
test images.

adapt the model (via a genetic algorithm) as they
traverse the image. By doing this, they achieve both
high compression ratio and near real-time execu-
tion speed. Second, we evolved nonlinear predictive
models represented as s-expressions, as opposed to
the weighted linear models used in [SIH97].

A promising direction for future work would be
to combine Salami et al’s adaptive model approach
with our GP-based nonlinear model evolution sys-
tem. While this is likely to be slower than the evolv-
able hardware implementation of [SIH97], such an
architecture implemented using our genome com-
piler (Section 3.1) may be able to provide accept-
able, near real-time performance.

Neural networks have previously been used to
learn nonlinear predictors (c.f. [JKHM93]). How-
ever, it is difficult to compare these approaches with
our work because they do not compare their sys-
tem to current, standard lossless image compres-
sion algorithms (this is in part because many of
the advances in lossless compression are quite re-
cent [MW96, MW97]).

Salami and colleagues have also developed an
evolvable hardware system for lossy compression
which evolves nonlinear predictive models on func-
tion level evolvable hardware [SMH97, SMH96].
This is the work which is most similar to our own,
since their system could be used for lossless com-
pression by not using quantization. Our approach
differs in the representation that is used (GP s-
expressions vs. evolvable hardware configurations)
and in the focus on efficient software implementa-
tion techniques (e.g., genome compiler) as opposed
to hardware implementation.

Image compression using GP has been previously
studied in the context of programmatic compression
[Koz92, NB96], which is similar to predictive cod-
ing, in that an image is used as the target function
for symbolic regression. A major difference between
programmatic compression and predictive coding is
that instead of learning a model which predicts the

value of the current pixel based on neighboring pixel
values, programmatic compression uses only the
current pixel position in its terminal set.7 That is,
programmatic compression does not exploit knowl-
edge of neighboring pixel values). Another major
difference is that in programmatic compression, no
error image is computed – only the evolved model
is stored (and possibly further compressed using a
standard dictionary-based or entropy-coding com-
pressor). Thus, programmatic compression is fun-
damentlaly a lossy technique, although in theory it
is possible to achieve lossless compression if a per-
fect model is discovered by the GP. Koza [Koz92]
initially demonstrated this technique on a 30 by 30
bitmap. Nordin and Banzhaf [NB96] used CGPS,
a very efficient GP system, and heuristics such as
chunking (tiling an image into smaller subimages
which were separately compressed) to scale up the
technique to 256 by 256 images.

Previous work in the implementation of high-
performance GP systems closely related to our
genome compiler includes that of Nordin and
Banzhaf, [NB95], whose CGPS system directly ma-
nipulates SPARC machine code, and Juille and Pol-
lack [JP96], whose system compiles s-expressions
into virtual stack-based machine code. A detailed
comparison between the genome compiler and pre-
vious work can be found in [FSM98].

6 Discussion and Future Work
The research reported here is preliminary, and is
only the first step in understanding the capabilities
and limitations of using genetic programming for
lossless image compression.

We believe that our initial results are quite
promising, since they show that the evolved mod-
els can yield an improvement over CALIC, which
is currently the best known lossless image compres-

7Koza used the X,Y position in his terminal set; Nordin
and Banzhaf found that using a linear index performed better
than using both X and Y values.

sion algorithm. Furthermore, these results were ob-
tained without any special tuning of algorithm con-
trol parameters or the function/terminal sets for
the GP system. Due to the extremely long run-
times for evolving compressed images (at the time
that the experiments were being run, the perfor-
mance improvements described in Sections 3.1 and
3.2 were still under development), we have only col-
lected data for a small number of runs. We are
currently collecting more data to better understand
the relative efficacy of evolutionary compression on
a wide range of image classes. Further experimen-
tation is also necessary to understand the stability
of this approach (that is, how sensitive the GP is to
random seeds).

However, it should be noted that the genetic pro-
gramming system takes several orders of magnitude
more time to evolve a model that achieves its supe-
rior results (several hours per image) than the other
approaches (which run in a few seconds). Although
slow compression times are acceptable for some ap-
plications, as long as decompression is fast (e.g., for
archiving images), this is not acceptable for appli-
cations requiring near real-time compression times.

We have performed some preliminary experi-
ments using a standard GA to evolve a weighted
linear model for our test images (as opposed to the
nonlinear models evolved by our GP). So far, we
have not obtained any linear predictor which does
not result in a larger compressed file size than the
evolved GP nonlinear models. This indicates that
the ability of the GP to represent nonlinear models
plays a significant role in achieving high compres-
sion ratios. We are currently performing a more
systematic study to verify the utility of the nonlin-
ear models.

There are many more directions which can be
pursued in evolutionary image compression. First,
it seems worthwhile to experiment with different
entropy coders. Second, there are more sophisti-
cated predictive coding architectures which can be
explored. One such example would be a two-pass
model in which a standard (evolved or hand-coded)
linear model is first applied to minimize first or-
der entropy, then followed by the application of an
evolved nonlinear model to model the error after
the linear model is applied. Third, we can divide
the image into subimages and apply the compres-
sion separately to the subimages.8

8Nordin and Banzhaf called this “chunking” [NB96];

Finally, a very intriguing prospect would be to
try to evolve models which are more general than
the image-specific nonlinear models that were ex-
plored in this paper. By using sets of images as
fitness cases instead of a single image, it is possi-
ble to try to evolve a single predictive model (such
as those handcoded in traditional lossless compres-
sion algorithms) which works well for a large class
of images. This will no doubt require an enormous
amount of computation. However, it may be possi-
ble to generate a nonlinear model, which when pos-
sibly combined with context modeling techniques,
yields a better, general purpose model than those
used by state of the art algorithms.

Acknowledgments
The research described in this paper was performed
at the Center for Integrated Space Microsystems,
Jet Propulsion Laboratory, California Institute of
Technology, and was supported by the National
Aeronautics and Space Administration. Thanks to
Darren Mutz for programming assistance. Adrian
Stoica, Benny Toomarian, and Ken Hayworth pro-
vided helpful comments on the work. Thanks to
Bill Punch and Douglas Zonker for making lil-gp
publicly available.

References
[Cen93] Microelectronics Research Center. Uni-

versal source encoder for space - USES,
preliminary product specifcation, ver-
sion 2.2. Technical report, Microelec-
tronics Research Center, University of
New Mexico, 1993.

[FSM98] A. Fukunaga, A. Stechert, and
D. Mutz. A genome compiler for
high-performance genetic program-
ming. In Proceedings of the Genetic
Programming Conference, 1998.

[JKHM93] W.W. Jiang, S-Z. Kiang, N.Z. Hakim,
and H.E. Meadows. Lossless compres-
sion for medical imaging systems using
linear/nonlinear prediction and arith-
metic coding. In Proc. IEEE Interna-
tional Symposium on Circuits and Sys-
tems, volume 1, pages 283–6, 1993.

Salami et al [SMH96] have applied this technique in evolvable
hardware based lossy compression

[JP96] H. Juille and J.B. Pollack. Massively
parallel genetic programming. In P. An-
geline and K. Kinnear, editors, Ad-
vances in Genetic Programming 2. MIT
Press, 1996.

[Koz92] J. Koza. Genetic Programming: On the
Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

[MW96] N. Memon and X. Wu. Lossless com-
pression. In CRC Handbook of Commu-
nication. CRC Press, 1996.

[MW97] N. Memon and X. Wu. Recent progress
in lossless image coding. The Computer
Journal, 40:127–36, 1997.

[NB95] P. Nordin and W. Banzhaf. Evolving
Turing-complete programs for a regis-
ter machine with self-modifying code.
In Proceedings of the International Con-
ference on Genetic Algorithms. Morgan
Kaufmann, 1995.

[NB96] P. Nordin and W. Banzhaf. Program-
matic compression of images and sound.
In Proceedings of the Genetic Program-
ming Conference, pages 345–350, 1996.

[NG96] M. Nelson and J-L. Gailly. The
Data Compression Book (second edi-
tion). M&T Books, 1996.

[PTVF92] W.H. Press, S.A. Teukolsky, W.T. Vet-
terling, and B.P. Flannery. Numerical
Recipes in C: The Art of Scientific Com-
puting, Second Edition. Cambridge Uni-
versity Press, 1992.

[PZ96] B. Punch and D. Zonker. lil-gp ge-
netic programming system version 1.1
beta version. Michigan State University,
http://GARAGe.cps.msu.edu/software/lil-
gp/index.html, 1996.

[RYM93] R.F. Rice, P-S Yeh, and W.H. Miller.
Algorithms for high-speed universal
noiseless coding. In Proc. of the AIAA
Computing in Aerospace 9 Conference,
1993.

[SIH97] M. Salami, M. Iwata, and T. Higuchi.
Lossless image compression by evolvable

hardware. In Proc. European Conf. on
Artificial Life. MIT Press, 1997.

[SMH96] M. Salami, M. Murakawa, and
T. Higuchi. Data compression based on
evolvable hardware. In International
Conference on Evolvable Systems.
Springer Verlag LNCS, 1996.

[SMH97] M. Salami, M. Murakawa, and
T. Higuchi. Lossy image compres-
sion by evolvable hardware. In Proc.
Evolvable Systems Workshop, Interna-
tional Joint Conference on Artificial
Intelligence, 1997.

[TC93] W. Tackett and A. Carmi. SGPC:
simple genetic programming in
C. ftp://ftp.io.com/pub/genetic-
programming, 1993.

[VYL92] J. Venbrux, P-S Yeh, and M.N. Liu.
A VLSI chip set for high-speed lossless
data compression. IEEE Trans. on Cir-
cuits and Systems for Video Technology,
2(4), 1992.

[WM97] X. Wu and N. Memon. Context-
based, adaptive, lossless image codes.
IEEE Transactions on Communica-
tions, 45(4), 1997.

[WSS96] M.J. Weinberger, G. Seroussi, and
G. Sapiro. LOCO-I: A low complex-
ity, context-based, lossless image com-
pression algorithm. In Proceedings
of the Data Compression Conference
(DCC’96), pages 140–149, 1996.

[YRM93] P-S Yeh, R.F. Rice, and W.H. Miller.
On the optimality of a universal noise-
less coder. In Proc. of the AIAA Com-
puting in Aerospace 9 Conference, 1993.

