
A Genome Compiler for High Performance Genetic

Programming

Alex Fukunaga, Andre Stechert and Darren Mutz

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Dr., M/S 126-347

Pasadena, CA 91109-8099
alex.fukunaga@jpl.nasa.gov, andre.stechert@jpl.nasa.gov, darren.mutz@jpl.nasa.gov

ABSTRACT

Genetic Programming is
very computationally expen-
sive. For most applications,
the vast majority of time is
spent evaluating candidate so-
lutions, so it is desirable to
make individual evaluation as
e�cient as possible. We de-
scribe a genome compiler which
compiles s-expressions to ma-
chine code, resulting in signi�-
cant speedup of individual eval-
uations over standard GP sys-
tems. Based on performance
results with symbolic regres-
sion, we show that the exe-
cution of the genome compiler
system is comparable to the
fastest alternative GP systems.
We also demonstrate the util-
ity of compilation on a real-
world problem, lossless image
compression. A somewhat sur-
prising result is that in our test
domains, the overhead of com-
pilation is negligible.

1 Introduction
Genetic programming [Koz92] (Figure 1) is a very
computationally intensive task. It is well-known
that in many applications to which genetic pro-
gramming is applied, the vast majority of compu-
tational resources is used by the evaluate step in
Figure 1, which evaluates candidate solutions with
respect to an objective function. Thus, one of the
challenges in implementing a high-performance GP
system is speeding up the evaluation step as much
as possible.
We were made acutely aware of the need for an

e�cient individual evaluation process when we at-
tempted to apply GP to image compression (see
Section 4.2). Initially, we implemented the applica-
tion using lil-gp [PZ96], a standard GP system used
by numerous researchers, and found that it was pro-
hibitively slow to study genetic programming-based
image compression. We therefore sought to signif-
icantly improve the speed of execution of the GP
system.
In standard GP, s-expressions are recursively

evaluated, and each evaluation of an atom requires
a recursive function call. This means that even
though many atoms in the set of primitives can be
evaluated by a single machine instruction (e.g., add,
multiply, independent variables, etc.), much time is
spent in unnecessary function call overhead such
as pushing/popping values onto the stack. This
problem is not unique to lil-gp: Keith and Mar-
tin [KM94] observed that function call overhead

1

can overwhelm the time actually required to eval-
uate nodes, even with a very e�cient, linear (non-
recursive) s-expression representation.
We therefore sought to eliminate as much of this

function call overhead as possible, and implemented
a genome compiler1 which compiles s-expressions
into SPARC machine language instructions. In ap-
plications where the same tree is evaluated many
times (e.g., symbolic regression, image compres-
sion), the bene�ts of eliminating function call over-
heads outweighs the overhead of compilation.

t := 0
initialize P (t);
evaluate P (t);
while not terminate do

P 0(t) := recombine P (t);
P 00(t) := mutate P 0(t);
evaluate P (t);
P (t+ 1) := select (P 00(t) [Q);
t := t+ 1;

end while

Figure 1 Algorithm schema for Genetic

Programming. P is a population of candi-

date solutions; Q is a special set of individ-

uals that has to be considered for selection,

e.g., Q = P (t).

The rest of the paper is organized as follows:
In Section 2, we review related work on high-
performance evaluation mechanisms for genetic pro-
gramming. Section 3 describes our genome com-
piler in detail. Section 4 presents some empirical
evaluations of genome compiler based genetic pro-
gramming, comparing its performance with stan-
dard lil-gp and other proposed methods for high-
performance GP implementations. We conclude in
Section 5 with a discussion of results and directions
for future work.

2 Related Work
A number of researchers have addressed the prob-
lem of highly e�cient implementations of genetic
programming.
Keith and Martin [KM94] observed that the re-

1As far as we know, this term was coined by Keith and
Martin in [KM94].

cursive evaluation of the standard tree representa-
tion of s-expressions and used in GP systems widely
used by the GP research community such as SGPC
[TC93] lil-gp [PZ96] was ine�cient because much
time is used parsing the type token for each node
in the tree. They showed that a linear, stack-based
internal representation of s-expressions resulted in
signi�cant speed improvement over a tree repre-
sentation. However, they observed that even with
the e�cient linear representation, function calls still
posed a signi�cant overhead, and suggested that the
implementation of a genome compiler would be an
interesting direction for future research.
Perkis [Per94] �rst demonstrated the use of ge-

netic operators (crossover and mutation) on a lin-
ear individual representation using a stack-based
virtual machine (as opposed to the standard s-
expression representation).2 The idea of directly
evolving stack-based linear programs was also used
in HiGP, a high performance, parallel GP system
developed by Sto�el and Spector [SS96], which, like
Perkis' system, works directly on a population of
linear programs for a virtual stack machine.
An interesting contrast between s-expression

based approaches and stack-based approaches is in
the enforcement of closure property (i.e., that guar-
antees all programs generated are valid and ex-
ecutable by the interpreter). In stack-based ap-
proaches, it is possible that a virtual machine in-
struction which takes arguments o� the stack will
not have enough values available on the stack. In
this case, both of the above systems maintain clo-
sure by ignoring the instruction (i.e., they treat it as
a NOOP). In s-expression based genetic program-
ming, the genetic operators assure that the arity
of all functions is correct. This was cited as an
advantage of using Lisp s-expressions as the pro-
gram representation by Koza [Koz92]. Given the
good performance behavior reported for stack-based
GP [Per94, SS96] in comparative experiments with
standard s-expression based GP, it is now unclear
whether there is any advantage to the ease of main-
taining the closure property that the s-expression
based approaches o�er.

2In contrast, Keith and Martin used a linear represen-
tation as a representation of s-expressions, and their genetic
operators worked at the level of s-expressions, not directly on
the linear representation (e.g., \tree crossovers" were simu-
lated on the linear representation).

While the previous stack-based approaches used
a linear representation internally, Juille and Pollack
implemented a system which applies genetic oper-
ators to s-expressions, but previous to execution,
compiles them into a linear representation for ex-
ecution on a stack-based virtual machine [JP96].
Note that in this scheme, there is no problem of
handling possible stack underow during execution,
because the linear programs are directly translated
from s-expressions that guarantee that the arity of
the functions is correct.
Nordin developed the Compiling Genetic Pro-

gramming System (CGPS) [Nor94, NB95], which
manipulates linear arrays of SPARC machine lan-
guage instructions. Crossover and mutation are
applied at the instruction boundaries, to ensure
that the machine code resulting from the opera-
tions are valid. Note that despite its name, the
Compiling Genetic Programming System does not
apply a compilation procedure to its individuals at
any time { CGPS is unique in that it directly ma-
nipulates machine-speci�c code, as opposed to the
other approaches, which apply genetic operators to
s-expressions or linear code for a virtual stack ma-
chine.
The genome compiler described below combines

1) the idea in Juille and Pollack's work of applying
genetic operators to s-expresssions, but compiling
s-expressions into a representation that can be ex-
ecuted more e�ciently, and 2) the machine code
representation used by Nordin, which results in the
fastest3 possible execution (as opposed to a virtual
machine).

3 The Genome Compiler
The motivation for examining the possibility of con-
verting a LISP s-expression into a form that is more
e�cient to evaluate comes primarily from the obser-
vation that the standard method of recursive evalu-
ation involves much more computational e�ort than
simply applying arithmetic operators in sequence.
That is, since simple arithmetic operations can be
executed with a single instruction at the hardware
level, our intuition tells us that the arithmetic por-
tion of the computation is probably dwarfed by the

3In this paper, when we say fast, we refer to execution
speed for evaluating individuals, and not to the e�ciency of
GP search algorithms.

overhead associated with pushing and popping ar-
guments and return values on the program's stack
during recursive s-expression evaluation. This ob-
servation led us to conclude that translating the s-
expressions evolved by the GP into a more terse
machine language equivalent would greatly improve
performance. Before each individual s-expression is
evaluated, the genome compiler compiles it (at run-
time) to SPARC machine language [WG94] code as
described below.
The method of generating machine executable

code proceeds naturally from the standard recur-
sive evaluation procedure. The post order traversal
of the graph corresponding to the given s-expression
is analogous to the order of operations one would
perform if the computation were carried out in post-
�x form with a stack. That is, traversing the tree
representation in Figure 2 in post order gives us the
stack-executable code in Figure 3.

+

*

x x

-

x x

Figure 2 An example individual.

Translating this stack-executable code to machine
code, where values are pushed and popped from lo-
cations in memory, is a clear speed improvement
over recursive tree evaluation, which involves main-
taining the program's stack in addition to these op-
erations.
An additional speed improvement is realized

when one considers the register �le itself a stack,

push(x)
push(x)
t1 = pop()
t2 = pop()
push(t2 * t1)
push(x)
push(x)
t1 = pop()
t2 = pop()
push(t2 - t1)
t1 = pop()
t2 = pop()
push(t2 + t1)

Figure 3 Stack machine code that computes

the value of the s-expression in Figure 2.

albeit one of limited depth. In addition to a reduc-
tion in data access times we also gain the ability
to e�ectively pop two operands, perform an arith-
metic operation and push the result, all in a single
machine instruction4. This is due to the fact that
in many modern architectures arithmetic instruc-
tions allow both source registers and a destination
register to be speci�ed.
Representing oating point registers as

f0; f1; : : : ; f31, with the constant value x stored
in f31, Figure 4 gives the assembly-level code
corresponding to the s-expression above. Three
breaks in the generated assembly are labeled (1,
2, and 3); the breaks correspond to the code
generated so far when the traversal has progressed
to the node indicated in the tree diagram.
Our compiler directly generates the machine ex-

ecutable code that corresponds to this assembly-
level code. A key point to note is that the C pro-
gramming language provides the necessary exibil-
ity here: it allows the programmer to create jumps
to code that is generated at runtime by casting an
integer array to a function pointer [NB95]. This
eliminates the the overhead of invoking an external
compiler.
The computational complexity of compiling each

s-expression down to machine executable code is lin-

4Note that not all function primitives in the individuals
generated by the GP can be executed in a single instruc-
tion. For example, protected division requires a test for a
denominator of zero.

ear in the number of nodes in the tree corresponding
to the s-expression, the same as that of recursive
tree evaluation. Both procedures involve visiting
each node in the tree exactly once and executing a
constant number of operations at each node.
It was previously noted that some function prim-

itives in s-expressions generated by the GP cannot
be executed in a single machine instruction. This is
particularly true of conditionals, as Figure 5 illus-
trates. For the purposes of this example, oating
point register f31 contains the independent variable
x, as before, and f29 and f30 contain the constants 0
and 5, respectively. The arity four primitive ifgte
is de�ned such that if its four arguments are a, b, c,
and d it returns c if a � b and d otherwise.
The genome compiler approach is similar to

[NB95] only in that both methods involve runtime
machine code generation and execution; in our ap-
proach individuals are not manipulated at the ma-
chine code level. Like our compiler, The HiGP
system described in [SS96] takes the approach of
converting s-expressions into stack machine instruc-
tions, incorporating an extremely space e�cient
memory representation of individuals as well. How-
ever, HiGP performs evolution at this level, using
a string-based genetic algorithms approach. Our
system acts instead as a means of speeding up the
execution of standard tree-based GP systems. Our
method is perhaps most similar to [JP96] in that
population members are \pre-compiled" down to a
stack-executable form; the genome compiler takes
that approach one step further and compiles the
stack-executable instructions down to the machine
code level.

4 Empirical Evaluation
We evaluated the performance improvements ob-
tained using the genome compiler on two tasks,
symbolic regression and lossless image compression.
In both tasks, each candidate s-expression is eval-
uated many times, which potentially justi�es the
overhead of compilation.

4.1 Symbolic Regression

Symbolic regression is a canonical genetic program
problem in which the task is to generate a program
which approximates target function ftarget. The ob-

+

*

x x

-

x x1 2

3

mov fp31, fp0
mov fp31, fp1
mult fp0, fp1, fp0
mov fp31, fp1
mov fp31, fp2
sub fp1, fp2, fp1
add fp0, fp1, fp0

1

2
3

Figure 4 The s-expression from Figure 2 with corresponding assembly-level code. Numbered
breaks in the code correspond to the code generated so far when the post order traversal has
progressed to the node indicated in the tree diagram.

ifgte

+x 5 x

x 5

mov fp31, fp0 ! fp0 <- x
mov fp30, fp1 ! fp1 <- 5
sub fp0, fp1, fp0 ! fp0 <- x-5
cmp fp0, fp29 ! compare 0, x-5
bge 7 ! branch on >=
nop
mov fp31, fp0 ! fp0 <- x
mov fp31, fp1 ! fp1 <- 5
add fp0, fp1, fp0 ! fp0 <- x-5
ba 3 ! branch always
nop
mov fp31, fp0 ! fp0 <- x

Figure 5 An individual with a conditional and its assembly equivalent.

jective function to minimize is:

numcasesX

i=1

(fgp(xi)� ftarget(xi))
2;

for numcases randomly generated �tness cases (test
points), where fgp is a candidate GP solution.
Here, we use symbolic regression to study the rel-

ative speed of the genome compiler compared with
lil-gp, as well as other GP systems.
We used the test function ftarget(x) = x9. The

genome compiler and standard lil-gp systems were
con�gured as follows: population=500, genera-
tions=30, function set = f+;�; �;%g (where %

is the protected division operator [Koz92]), ter-
minal set=X , tournament selection (size=5), 90%
crossover, 10% reproduction, no mutation, depth
limit 5).
To observe the speed bene�t of compilation as the

relative overhead of compilation was varied, we var-
ied the number of �tness cases between 1 and 1000.
Figure 6 shows the runtimes (cpu time) of lil-gp
and the genome compiler, averaged over 100 inde-
pendent runs; Figure 7 gives a detail of the region
where the number of �tness cases varies between 1
and 20.
As shown in Figure 6, the speedup of the genome

compiler, tlil�gp=tgenome compiler , improves as the

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000

ru
nt

im
e

(s
ec

on
ds

)

number of fitness cases

Comparative Performance of GP Systems on Symbolic Regression Problem, f(x) = x^9

sgpc
standard lil-gp
lil-gp with ICC

Figure 6 Time to complete 30 generations
of GP on symbolic regression of ftarget = x9

for the Genome Compiler, lil-gp, and SGPC
systems. Mean and standard deviation of
100 runs. All timings in this �gure were mea-
sured on a 296 MHz UltraSparc 2.

number of test cases is increased (i.e., the relative
overhead of compilation is decreased), reaching a
maximum speedup of around 50 when the number
of test cases is 1000.
A somewhat surprising result is that even when

only a single test case was used for symbolic regres-
sion, the performance of the genome compiler is no
worse than that of standard lil-gp. This is because
even with one test case, both standard lil-gp and
the genome compiler need to traverse the tree at
least once (lil-gp traverses the tree once to evalu-
ate it, the genome compiler traverses the tree once
during compilation). The overhead of the function
calls for this single traversal is quite signi�cant, and
dwarfs the di�erences between lil-gp's execution of
the expression and the genome compiler's compi-
lation of the expression. In comparison, the com-
putational cost of actually executing the compact
machine code translation is almost negligible { note
in Figure 7 that the runtime for the genome com-
piler GP barely increases as the number of test cases
is increased from 1 to 20. Thus, because both stan-
dard recursive evaluation and the compiler needs to
traverse the expression at least once, compilation
overhead is negligible.

0

5

10

15

20

25

30

0 5 10 15 20

ru
nt

im
e

(s
ec

on
ds

)

number of fitness cases

Comparative Performance of GP Systems on Symbolic Regression Problem, f(x) = x^9

sgpc
standard lil-gp
lil-gp with ICC

Figure 7 Performance on small numbers of
regression test cases (a zoomed view of Fig-
ure 6):Time to complete 30 generations of
GP on symbolic regression of ftarget = x9 for
the Genome Compiler, lil-gp, and SGPC sys-
tems. Mean and standard deviation of 100
runs. All timings in this �gure were mea-
sured on a 296 MHz UltraSparc 2.

4.1.1 Comparison with other high performance GP
systems

To put the speedup enabled by genome compilation
in perspective, we also briey compare our sym-
bolic results with other published results for high-
performance GP systems.
Sto�el and Spector compared the speed of HiGP

against lil-gp on symbolic regression of the target
function x9, where the con�guration of lil-gp they
used was: population=500, maxgenerations=30,
function set = f+;�; �;%g, terminal set=X , tour-
nament selection (size=5), 90% crossover, 10% re-
production, no mutation). They compared the av-
erage time per generation of the two systems, and
found that the maximum speedup (tlil�gp=tHiGP)
measured was approximately 5, when the depth
limit for lil-gp was set to 17 [SS96]. 5 The genome
compiler, due to its use of machine code, achieves
about an order of magnitude speedup over HiGP.
Because of the use of machine language instruc-

tions, the CGPS system of Nordin and Banzhaf
[NB95] is expected to be closest to our genome

5Note that Sto�el and Spector stopped the lil-gp runs
when the optimal solution was found, while in our experi-
ments, the GP was run a full 30 generations.

compiler with respect to genome evaluation speed.
Nordin reported that on a polynomial symbolic re-
gression task, CGPS ran on average 60 times faster
on symbolic regression than SGPC, a standard re-
cursive tree evaluator based GP system written
by Tackett and Carmi [TC93], where both CGPS
and SGPC was running on a SPARC IPX. Al-
though we were not able to directly compare the
genome compiler with CGPS, we can perform an
indirect comparison by comparing the genome com-
piler with measurements of SGPC speed on a 296
MHz SPARC Ultra 2, using the same symbolic re-
gression problem (ftarget = x9) and the same con-
trol parameters (Figures 6,7). The genome compiler
performs roughly 50-60 times faster than SGPC
running on the same machine, which is compara-
ble to the execution speeds for CGPS reported by
Nordin and Banzhaf [NB95].

4.2 Lossless Image Compression

The impetus for the development of the genome
compiler was the need to perform e�cient s-
expression execution for the task of lossless image
compression using a nonlinear predictive coding al-
gorithm for which the nonlinear model was auto-
matically generated using a genetic programming
system. We briey describe the application below.
Our compression system is detailed in another pa-
per [FS98]. See [MW96, MW97] for more details on
predictive coding based image compression.
Predictive coding is an image compression tech-

nique which uses a compact model of an image to
predict pixel values of an image based on the val-
ues of neighboring pixels. A model of an image is a
functionmodel(x; y), which computes (predicts) the
pixel value at coordinate (x; y) of an image, given
the values of some neighbors of pixel (x; y), where
neighbors are pixels whose values are known. We
process the image in raster scan order, and use the
set of neighboring pixels f(x-1,y-1), (x,y-1), (x+1,y-
1),(x-1,y)g. Linear predictive coding is a simple,
special case of predictive coding in which the model
simply takes a weighted average of the neighboring
values. Nonlinear models assign arbitrarily com-
plex functions to the models. Applying a model to
an image results in an error signal (the di�erences
at each pixel between the value predicted by the
model and the actual value of the pixel in the orig-
inal image. To complete the compression process,

the error signal is compressed using a standard data
compression technique such as Hu�man coding.
If we transmit this compressed error signal as well

as the model, then a receiver can reconstruct the
original image by applying an analogous decoding
procedure (see Figure 8).

Encoder(Model,Image)
for x = 0 to xmax
for y = 0 to ymax
Error[x,y] = Image[x,y] - Model(x,y)

Decoder(Model)
for x = 0 to xmax
for y = 0 to ymax
Image[x,y] = Model(x,y) + Error[x,y]

Figure 8 Algorithm schema for predictive
coding. Model(x; y) is a function that takes
the coordinates of a pixel and returns a pre-
dicted value of that pixel. Image and Error
are two-dimensional arrays.

Given an input image, our system uses GP to gen-
erate a nonlinear model for the predictive coding.
The terminals and functions used were:

� values of the four neighboring pixels Image[x-
1,y-1], Image[x,y-1], Image[x+1,y-1], Image[x-
1,y].

� selected constant values: 1, 5, 10, 100.

� arithmetic functions +,-,*,% (protected divi-
sion [Koz92])

� the conditional operator (IFLTE arg1 arg2 ret1
ret2) which returns the value of ret1 if arg1 �
arg2, and the value of ret2 otherwise.

� (MIN a b) and (MAX a b) functions which
return the minimum and maximum values of
their two arguments, respectively.

Since the model is applied to each pixel in the
image this application would be expected to bene�t
from compilation.
We ran 5 runs each of 50 generations of both the

genome compiler and lil-gp on a 64 pixel by 64 pixel
image compression problem. On a 296MHz Ultra-
Sparc 2, the average runtime for lil-gp was 9177

seconds, and the average runtime for the genome
compiler was 2071 seconds. 6

Note that in these runs, a signi�cant percentage
of the current runtime (about 50% for the 64 by 64
images in the experiments) was spent by the adap-
tive Hu�man coder which is run for each individual
evaluation, and not in the execution of compiled
machine code for individuals; this explains why the
speedup obtained (4-5 times) is not as impressive
as that for symbolic regression.
Although the runtime (several hours per image

using the genome compiler) is still too slow for
practical application of the technique, the signi�-
cant speedup enabled by compilation makes it much
more feasible to explore alternative search strate-
gies, function/terminal sets, etc. for this problem
(i.e., runs that took roughly a week using standard
GP can be now be completed in about a day).7

5 Conclusion/Discussion and
Future Work

We have described a genome compiler for speeding
up individual evaluations in GP. Experiments with
symbolic regression and image compression appli-
cations show that for applications in which indi-
viduals are repeatedly evaluated, the genome com-
piler provides a signi�cant speedup over standard
s-expression based GP systems as well as virtual
stack machine based systems; the speedup over con-
ventional GP systems written in C is comparable to
CGPS, the fastest reported GP implementation in
the literature. On extremely computationally ex-
pensive problems such as image compression, the
speed improvement that the genome compiler of-
fers makes the application of s-expression based GP
to the problem much more feasible. Furthermore,
we showed that the overhead of compilation can be
negligible, so that the speed bene�ts of compilation
can be signi�cant even when the number of times
individuals are repeatedly evaluated is small.8

6The compression ratios obtained by this system are
promising, but are beyond the scope of the present paper
(see [FS98]).

7[FS98] describes a faster implementation which removes
much of the overhead of the entropy coding.

8Figure 7 shows that signi�cant speed bene�ts can be ob-
tained for symbolic regression even when only 5-10 test cases
are used.

Our results highlight the fact that the utility of
genome compilation depends largely on the per-
centage of computational e�ort that can be saved
by eliminating function call overhead during s-
expression evaluation. Applications such as sym-
bolic regression are well suited for performance im-
provements using compilation techniques because
individual evaluations consist solely of s-expression
evaluations where the functions and terminals are
simple primitives, and the overhead of tree traversal
is signi�cant. On the other hand, the e�ect of com-
pilation is less dramatic in our image compression
application because much of the time for individual
evaluation is spent in entropy coding, which can not
be sped up by genome compilation.
Obviously, raw execution speed is not the only

important factor in evaluating a GP system. The
relative merits of s-expression based GP vs. alter-
natives such as stack-based GP and CGPS is still
an open research problem { with respect to search
e�ort, s-expression based GP seems to do better
on some problems, while stack-based approaches
do better on others (c.f., [Per94, Bru97]). Like-
wise, the dynamics of CGPS in comparison to tra-
ditional GP and stack-based GP are not well un-
derstood yet. Previous work had shown that al-
ternative approaches such as stack-based GP and
CGPS are capable of signi�cantly faster execution
of s-expressions than traditional s-expression GP.
Our work shows that by using a compiler to re-
move function call overhead, s-expression based GP
can be competitive with the fastest alternative ap-
proaches with respect to execution speed.
A disadvantage of the genome compiler approach

is that the implementation is machine speci�c. In
comparison, GP systems such as HiGP which use
virtual stack-based machines are machine indepen-
dent, while being signi�cantly faster than tradi-
tional s-expression based GP systems. A genome
compiler that compiles to a virtual machine code
(like that of Juille and Pollack,) could possibly
yield execution speeds comparable to virtual stack-
machine GP. We have implemented an e�cient vir-
tual machine compiler, and preliminary results seem
to indicate that we can obtain performance within a
factor of 2-3 of the machine code compiler. Further
details will be provided in a future paper.
Finally, another interesting direction in which to

extend the genome compiler would be to imple-
ment compiler optimizations which use editing op-
erations [Koz92] or standard compiler optimization
techniques to collapse instructions together, remove
redundant operations, reorder operations, etc., to
further speed up execution. Although this would
add additional compilation overhead, the bene�ts
may be worthwhile for applications such as image
compression in which the individual is evaluated
many times.

Acknowledgments
The research described in this paper was performed
at the Center for Integrated Space Microsystems,
Jet Propulsion Laboratory, California Institute of
Technology, and was supported by the National
Aeronautics and Space Administration. Thanks to
Bill Punch and Douglas Zonker for making lil-gp
publically available, and to Walter Tackett and Avi-
ram Carmi for making SGPC publically available.

References
[Bru97] W.S. Bruce. The lawnmower problem re-

visited: Stack-based genetic programming
and automatically de�ned functions. In
Proceedings of the Genetic Programming
Conference, pages 52{57, 1997.

[FS98] A. Fukunaga and A. Stechert. Evolv-
ing nonlinear predictive models for lossless
image compression with genetic program-
ming. In Proceedings of the Genetic Pro-
gramming Conference, 1998.

[JP96] H. Juille and J.B. Pollack. Massively par-
allel genetic programming. In P. Angeline
and K. Kinnear, editors, Advances in Ge-
netic Programming 2. MIT Press, 1996.

[KM94] M.J. Keith and M.C. Martin. Genetic
programming in C++: Implementation is-
sues. In K. Kinnear, editor, Advances in
Genetic Programming. MIT Press, 1994.

[Koz92] J. Koza. Genetic Programming: On the
Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

[MW96] N. Memon and X. Wu. Lossless compres-
sion. In CRC Handbook of Communica-
tion. CRC Press, 1996.

[MW97] N. Memon and X. Wu. Recent progress
in lossless image coding. The Computer
Journal, 40:127{36, 1997.

[NB95] P. Nordin and W. Banzhaf. Evolving
Turing-complete programs for a register
machine with self-modifying code. In Pro-
ceedings of the International Conference
on Genetic Algorithms. Morgan Kauf-
mann, 1995.

[Nor94] P. Nordin. A compiling genetic program-
ming system that directly manipulates the
machine-code. In K. Kinnear, editor,
Advances in Genetic Programming. MIT
Press, 1994.

[Per94] T. Perkis. Stack-based genetic pro-
gramming. In Proc. IEEE International
Conference on Evolutionary Computation,
1994.

[PZ96] B. Punch and D. Zonker. lil-gp ge-
netic programming system version 1.1
beta version. Michigan State University,
http://GARAGe.cps.msu.edu/software/lil-
gp/index.html, 1996.

[SS96] K. Sto�el and L. Spector. High-
performance, paralle, stack-based genetic
programming. In Proceedings of the
Genetic Programming Conference, pages
224{229. MIT Press, 1996.

[TC93] W. Tackett and A. Carmi. sgpc:
simple genetic programming in
C. ftp://ftp.io.com/pub/genetic-
programming, 1993.

[WG94] D. Weaver and T. Germond. The SPARC
Architecture Manual, Version 9. PTR
Prentice Hall, 1994.

