
Distributed Island-Model Genetic Algorithms Using

Heterogeneous Parameter Settings

Yiyuan Gong and Alex Fukunaga

Graduate School of Arts and Sciences

University of Tokyo

Abstract—Achieving good performance with a parallel genetic
algorithm requires properly configuring control parameters such
as mutation rate, crossover rate, and population size. We consider
the problem of setting control parameter values in a standard,
island-model distributed genetic algorithm. As an alternative to
tuning parameters by hand or using a self-adaptive approach, we
propose a very simple strategy which statically assigns random
control parameter values to each processor. Experiments on
benchmark problems show that this simple approach can yield
results which are competitive with homogeneous distributed
genetic algorithm using parameters tuned specifically for each
of the benchmarks.

I. INTRODUCTION

Parallel computing has become pervasive. Modern high-

performance computers are highly parallel clusters or grids

composed of standard, multicore processors. Cloud comput-

ing, grid computing and peer-to-peer (P2P) environments

are becoming increasingly mature, enabling many users to

access vast computational resources. Genetic algorithms and

other evolutionary methods can benefit significantly from this

trend, since evolutionary algorithms can be parallelized and

distributed straightforwardly.

One standard way to parallelize a GA on a cluster is an

island model distributed GA, in which each processor executes

the GA independently, and there is a periodic migration of

individuals among the processors. Assuming that an appropri-

ate problem representation and genetic operators have been

designed, this general framework is simple to implement.

However, obtaining good performance in practice often re-

quires tuning the GA control parameters such as mutation and

crossover rates.

In an academic setting, parallel GA experiments are usu-

ally performed on a cluster which is owned/operated by a

researcher, and it is possible to allocate the time and resources

for parameter tuning experiments. In practice, however, ex-

tensive parameter tuning is often not feasible. First, the time

available for solving a problem may be quite limited due

to urgent deadlines. Second, parallel resources may be very

expensive for a GA practitioner. An increasingly common

scenario is the use of massive computing resources on demand

using cloud/grid computing services, where the user is able to

use as many CPUs simultaneously as the budget will allow. In

situations like this where one is paying for CPU usage, the cost

of control parameter tuning experiments can be prohibitive.

While there has been significant previous work on setting

parameters for parallel GAs [1], this remains an active are of

research. Although there has been considerable progress in on-

line self-adaptation/learning of control parameters (c.f., [2]),

the drawback of these methods is that most of them are not

completely parameter free – there is a set of meta-level control

parameters which control the on-line adaptation. Furthermore,

it is not yet possible to predict, in general, how well any of

these techniques work in practice for a new, arbitrary problem.

In this paper, we consider a very simple approach to control

parameter selection for island-model, distributed GAs. Instead

of manually tuning control parameter values or dynamically

adjusting parameters during evolution, we simply select a

different, randomly selected set of control parameters (includ-

ing population size, mutation rate, and crossover rate) for

each processor. This randomized, heterogeneous distributed

GA exploits the fact that sufficiently sampling the space of

control parameter spaces can result in a near-optimal set of

control parameters being discovered (for a single processor).

Compared to most other methods, our approach is extremly

simple, but surprisingly, the effectiveness of this naive method

has not been investigated in the literature. We find that ran-

domized, heterogeneous distributed GAs can perform at least

as well as a hand-tuned, standard island-model GA, suggesting

that this naive approach might serve as a baseline against

which more sophisticated methods should be compared.

The rest of this paper is organized as follows. Section II

reviews the standard, island-model, distributed GA which we

studied. Section III first investigates the runtime distributions

of a standard, sequential GA, which then leads to our ran-

domized, heterogeneous approach to parallelization (Section

IV). Section V presents experimental evaluation of this simple

randomized approach on several benchmark problems. Section

VI compares our approach to related work in the literature,

and Section VII discusses the results and directions for future

work.

II. AN ISLAND-MODEL DISTRIBUTED GA

The basic approach to parallelization used in the rest of this

paper is a standard, island-model (multiple-deme), distributed

GA (DGA) for a computing cluster or cloud/grid environment

[3]. In an island-model DGA, each processor contains a local

population (deme), and each processor executes a GA on its

local population. Although each processor runs mostly inde-

pendently of the other processors, the processors occasionally

send individuals to each other using a migration mechanism.

In our DGA implementation, the processors are logically

820978-1-4244-7835-4/11/$26.00 ©2011 IEEE

procedure DGA;

begin

Initialize and evaluate local population P;
while(termination condition is false)

// Create next generation

for i from 0 to |P |/2
select 2 parents from P
mate the parents to generate 2 children;

evaluate children;

insert children into P
end for;

//process outgoing migrants

if (a new, local best-so-far individual B
was found)

send copy of B to a

randomly selected neighbour of P;
endif;

//process incoming migrants

while (incoming message buffer B 6= ∅)
h = first migrant from (B);
remove h from B;
replace worst individual in P with h;

end while;

end while;

end

Fig. 1. An island-model, distributed genetic algorithm

arranged in a A×B toroidal grid topology, so each processor

has 4 logical neighbors (up, down, left, right), and migration

occurs only between these neighbors. Migration occurs when

a new, best solution within a population (i.e., a local elite)

is found at some island I . This new local elite is sent to

a randomly chosen neighbor of I . When an island receives

a chromosome sent from its neighbour, the island replaces

the worst chromosome in its population with the incoming

migrant. Figure 1 shows the DGA pseudo-code which is

executed on each processor. The send operation for sending

outgoing migrants is non-blocking, and incoming migrants

are queued, so all communications are asynchronous. Other

migration strategies, such as those which explicitly seek to

promote diversity [4] can also be implemented asynchronously.

In a standard implementation of the island model DGA, the

processors are homogeneous. That is, all processors (deme)

use the same set of control parameter values (population size,

mutation rate, crossover rate, etc).

Island model DGAs are particularly well-suited for cloud

computing and grid computing environments due to their

low communication requirements. In GA applications where

fitness function computations are extremely expensive, this

communications bottleneck is not an issue. However, in appli-

cations such as numerical optimization where fitness functions

are relatively fast, slow interconnects can mean that fine-

grained GAs which assign, for example, a single individual

per processor, will not scale well. On the other hand, island

model DGAs require very little communication, and do not

require synchronization, so this model is well-suited for cloud

environments where high-speed interconnects between proces-

sors are not necessarily available.

III. ON THE RUNTIME DISTRIBUTIONS OF GAS

To motivate our randomized, heterogeneous DGA, we first

consider the necessity for parameter tuning. It is well-known

that the performance of a GA run on a given problem depends

on its control parameters, and that choosing the wrong set of

parameters could lead to unacceptable results. Even if we do

not insist on the optimality of a set of control parameters,

the No-Free Lunch theorems suggest that even if have a set of

control parameters which work well on a large set of problems,

it is dangerous to depend on such a control parameter to work

on any particular problem, because it may perform very poorly

on other problems [5].

Thus, if we assume that we run a GA only once in order

to try to solve a particular problem, it is risky to rely on a

single set of control parameters. In particular, suppose we

run a GA once with a randomly selected set of control

parameters. Intuitively, this would most likely result in very

poor expected performance, and this would be considered a

very poor strategy.

Now, suppose that we run the GA many times, but for each

run, we use a different set of control parameters. How does

the probability distribution of GA performance look like?

We investigated the variance of performance among runs

of a single population, sequential GA (the single-population,

single-core version of the code in Figure 1), with randomly

selected sets of control parameters (mutation rate, crossover

rate, and population size). We used the well-known Schwefel,

Rastrigin, and Griewangk functions as benchmarks:

Griewangk(x) = 1 +

n
∑

i=1

x2

i

4000
−

n
∏

i=1

(

cos
(xi√

i

)

)

(−512 ≤ xi < 512)

Rastrigin(x) = 10n+

n
∑

i=1

(

x2

i
− 10 cos(2πxi)

)

(−5.12 ≤ xi < 5.12)

Schwefel(x) =

n
∑

i=1

−xi sin

(

√

|xi|
)

(−512 ≤ xi < 512)

These three benchmarks are minimization problems. The

Schwefel function is a deceptive function where the global

minimum is located far from the next best local minima.

The Rastrigin function is highly multimodal, with regularly

distributed local minima. The Griewangk function is similar to

Rastrigin’s function, with many widespread local minima.The

dimensionality (n), which controls difficulty, was set to 40 for

these three benchmarks.

For each benchmark problem, we ran the single-population,

sequential GA 100 times. In each run, the mutation rate

and crossover rates were selected uniformly from [0.0, 1.0],
and the population size was selected uniformly [10, 100]. A

821

standard binary chromosome representation was used, and

roulette selection was used. On each run, we measured the

amount of time required to find a solution with a target fitness

score. The runs were given a time limit of 300, 360, and 600

seconds for the Griewangk, Rastrigin, and Schwefel functions,

respectively. If a solution was not found by the time limit, the

GA timed out and terminated.

Figure 2 shows the distribution of runtimes for the

Griewangk function. We grouped the runtimes of the 100 runs

in bins of 10 second intervals, and plotted the frequency of

runtimes. Runs that had not reached the target solution quality

by the deadline are counted in the bin corresponding to the

time limit. Similarly, Figures 3 and 4 show the runtime distri-

butions for the Rastrigin and Schwefel functions, respectively.

First, note that taking 100 random samples is roughly equiv-

alent to coarse-grained parameter tuning. There are only 3

control parameters (mutation rate, crossover rate, population),

so it is likely that the best parameter setting from 100 random

samples is a near-optimal control parameter setting.

We observe the following:

• For all three benchmark problems, a large fraction of the

random control parameter settings resulted in very poor

performance (timeouts).

• For all three benchmarks, a substantial portion of the

probability distribution is close to the best (leftmost) bins,

• For all three benchmarks, multiple runs (out of 100)

successfully solved the problem in less than 10 seconds.

In other words, for all three problems, random param-

eters perform very poorly in most cases, which is to be

expected. However, there is also a substantial fraction of

random parameter settings which actually successfully solve

the problem quickly. Our results indicate that in a single-

population GA, getting “good enough” performance is not

very difficult given enough tries, since 100 random samples is

sufficient to generate multiple “hits” (successful runs).

These characteristics of the runtime distributions of random

GA configurations is related to the well-known phenomenon

of long-tailed distributions for combinatorial search algorithms

[6]. In essence, the runtimes of search algorithms tend to not

be distributed as a normal distribution. Instead, the runtimes

have “long tails”, which means that it is quite likely that

any particular run could perform extremely poorly, but a set

of shorter runs can successfully sample the “good” side of

the distribution and solve problems quickly. Here, we have

shown that a similar situation exists for genetic algorithms on

our benchmark problems. While techniques that exploit this

phenomenon such as periodic restarts [7] and portfolios [8]

have been previously applied to sequential GAs, this earlier

work, as with most of the work in the GA literature, focused

on measuring fitness scores as a function of the number of

individuals evaluated, so the long-tailed nature of the runtime

distributions was not made clear. Here, by treating a target

fitness value as a “solution”, and measuring the time required

to reach a solution, we were able to clearly observe the

long-tailed distribution phenomenon as applied to random

configurations of a sequential GA.

 0

 5

 10

 15

 20

 25

 30

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

fr
e
q
u
e
n
c
y

time (seconds)

Griewank

Fig. 2. Runtime distribution for Griewangk function (time to reach target
score of 0.5)

 0

 10

 20

 30

 40

 50

 60

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

fr
e
q
u
e
n
c
y

time (seconds)

Rastrigin

Fig. 3. Runtime distribution for Rastrigin function (time to reach target score
of 10)

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

3
8
0

3
9
0

4
0
0

4
1
0

4
2
0

4
3
0

4
4
0

4
5
0

4
6
0

4
7
0

4
8
0

4
9
0

5
0
0

5
1
0

5
2
0

5
3
0

5
4
0

5
5
0

5
6
0

5
7
0

5
8
0

5
9
0

6
0
0

fr
e
q
u
e
n
c
y

time (seconds)

Schwefel

Fig. 4. Runtime distribution for Schwefel function (time to reach target score
of 500)

822

IV. A RANDOMIZED, HETEROGENEOUS DISTRIBUTED GA

We have observed above that in a single-population, se-

quential GA, good parameter settings are not very difficult

to find given enough samples. This suggests the following,

simple variation on the island-model distributed GA described

in Section II: Given a p-processor parallel system, initialize a

population on each processor, where each population uses a

set of randomly generated control parameters (as opposed to

running p processes with identical parameter settings).

Even if the populations were executed completely indepen-

dently (without migration), the expected performance of this

simple strategy would be no worse than running a single-

population, sequential GA p times, each with a different

parameter configuration, and taking the best result. The results

from Section III suggest that if p is large enough, we would

sample a parameter configuration which is well suited for the

particular problem and performs well.

Next, we consider the effect of migration in the DGA,

which has the effect of propagating newly found, high-quality

candidates among processors. Migration is expected to en-

hance the usefulness of parameter sets, which, on their own,

lead to poor results. For example, a parameter set which is

poorly suited for global optimization but well suited for local

optimization (e.g., small population, low crossover rate, low

mutation rate) are now periodically “seeded” with good start

points for local optimization from their neighbors. Thus, a

mixed ensemble of parameter sets which communicate via

migration can perform better than an ensemble of completely

independent populations.

In our experiments, the mutation and crossover rates were

unconstrained and selected uniformly from [0, 1.0], and the

population parameter was constrained to be in [10, 100].
Although we generally wanted the control parameters to be

as unconstrained as possible, we chose an upper bound for

100 for the population parameter because each processor was

running a generational GA, and it seemed that if we allowed

the population size to be too large, the frequency of migration

would end up being too small. Note that migration rate is

not a parameter because, as described in Section II, migration

occurs when a new local elite is found at a processor. Large

population sizes would not pose an issue regarding migration

frequency if we used a steady-state GA instead of the current

generational GA; this is an area for future work.

V. EXPERIMENTAL RESULTS

To assess the effectiveness of the randomized, heteroge-

neous DGA, we compared it to a homogeneous DGA. A

homogeneous DGA is a standard island-model DGA described

in Section II, where all processors use identical GA control

parameters.

As benchmark problems, we used the Griewangk, Rastri-

gin, and Schwefel functions, as well as the 14-input sorting

network problem. The n-input sorting network problem is the

problem of designing a circuit (network) with the minimal

number of comparator elements, such that given any set of

n numbers, the circuit sorts the inputs in order. This is a

classical problem in theoretical computer science [9] which

has been used as a benchmark in evolutionary computation.

We use the same genetic representation for sorting networks

as Graham, Masum and Oppacher [10]. The 14-input sorting

network problem is difficult and time consuming, because

evaluating a single candidate individual (sorting network)

requires executing the network on 214 test cases1. Thus, this

is an example of a problem which can benefit significantly

from parallel GAs. The fitness function for the sorting network

problem counts the number of test cases which are sorted

correctly, so this is a maximization problem where higher

scores are better.

The experiments were conducted on a campus supercom-

puting cluster consisting of Sun Blade X6250 nodes where

each node consists of two quad-core Xeon E5440(2.83GHz)

processors (8 cores per node). We implemented the DGAs

using MPI, assigning a single island deme to each core. Note

that in our experiments, the computational nodes we used are

fully allocated to the parallel GAs for the full duration of

the GA runs (no other computationally intensive processes are

running on the nodes other than the DGAs).

The goals of this study were:

1) Compare the average performance of a heterogeneous

DGA against the expected performance of the best

homogeneous DGA for each problem;

2) Compare the heterogeneous DGA against the average

performance obtainable by a homogeneous DGA which

used randomly selected parameter settings.

Figures 5-12 show the best-so-far solution curves for the

heterogeneous DGA and homogeneous DGA on the four

benchmark problems. Each graph consists of three curves,

which were obtained as follows:

The heterogeneous DGA was executed 20 times on each

problem, and are represented by the heterogeneous lines

in Figures 5-12.

In order to identify (an approximation of) the best ho-

mogeneous DGA configuration for each benchmark, we first

executed 200 independent runs of the homogeneous DGA,

where each run used a different set of randomly generated

control parameters (within each run, the homogeneous DGA

uses the same set of control parameters on all processors).

The parameter values were selected uniformly from the same

ranges used by the heterogeneous DGA. The runs were

executed with a problem-dependent time limit. From this data,

we identified the set of control parameters which yielded the

best fitness value in these 200 runs, and called this the best

homogeneous parameter set.

This procedure was repeated separately for each of the

4 benchmark problems, so for each benchmark, the best

homogeneous parameters are different, and represent a set of

control parameters which are highly tuned for that problem

1Although there are AN sequences of length N using an alphabet of size A,
the 0-1 Principle guarantees that correctly sorting all 2n sequences consisting
of 0s and 1s is sufficient to prove that a sorting network will correctly sort
any sequence of length N [9].

823

 15600

 15800

 16000

 16200

 16400

 0 100 200 300 400 500 600 700

s
c
o
re

seconds

best homogeneous
heterogeneous

average homogeneous

Fig. 5. 14-Input sorting network with 16 processors

(i.e., sampling 200 parameter sets for each problem can be

considered a tuning process).

For each of the 4 benchmark problems, we configured the

homogeneous DGA to use the best homogeneous parameters

on all processors, and executed this configuration 20 times

with different random seeds. The average results of these runs

is represented by the best homogeneous lines in Figures

5-12.

In order to evaluate the average performance obtainable with

a homogeneous DGA, we show the average performance of

200 homogeneous DGA runs on each problem, where every

run uses a different set of control parameter settings. These

are represented by the average homogeneous lines in

Figures 5-12.

Finally, in order to observe the scaling of performance

as the number of processors was varied, so this evaluation

of the heterogeneous and homogeneous DGAs was repeated

for 16 and 100 processors Figures 5,6,8 and 7 compare the

heterogeneous DGA and homogeneous DGA executed on a

4x4 toroidal grid (16 processors). Figures 9,11, 8 and 12

compare the heterogeneous DGA and homogeneous DGA on

a 10x10 toroidal grid (100 processors).

It is important to note that since the entire process was re-

peated for 16 and 100 processors, the best homogeneous

line in each graph represent the best homogeneous DGA not

only for that problem, but for that specific number of proces-

sors. Similarly, the randomized heterogeneous configuration is

different for each problem and set of processors since different

random seeds were used on all runs.

We observed the following from the data:

• Both the heterogeneous and best homogeneous configura-

tions significantly outperform the average homogeneous

DGA run.

• With the exception of the Schwefel function on 16

processors, the performance of the heterogeneous DGA

is competitive with the homogeneous DGA using the best

homogeneous control parameter set.

• As the number of processors is increased from 16 to

100, the relative performance of the heterogeneous DGA

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35

fi
tn

e
s
s

seconds

best homogeneous
heterogeneous

average homogeneous

Fig. 6. Griewangk function with 16 processors

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35

fi
tn

e
s
s

seconds

best homogeneous
heterogeneous

average homogeneous

Fig. 7. Rastrigin function with 16 processors

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70

fi
tn

e
s
s

seconds

best homogeneous
heterogeneous

average homogeneous

Fig. 8. Schwefel function with 16 processors

824

 15400

 15600

 15800

 16000

 16200

 16400

 0 100 200 300 400 500 600 700

fi
tn

e
s
s

seconds

best homogeneous
heterogeneous

average homogeneous

Fig. 9. 14-Input sorting network with 100 processors

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70

fi
tn

e
s
s

seconds

best homogeneous
heterogeneous

average homogeneous

Fig. 10. Schwefel function with 100 processors

improves.

Thus, the data shows that the expected performance of a het-

erogeneous DGA is significantly better than that of an average

homogeneous DGA run. In other words, using a heterogeneous

DGA successfully eliminates the risk of choosing an arbitrary

(random) set of control parameters for a given problem.

Furthermore, the performance of the DGA is quite compet-

itive with that of the best (highly tuned) homogeneous DGA

setting for each problem. Somewhat surprisingly, the heteroge-

neous DGA actually outperforms the best homogeneous DGA

in several cases (Griewangk and Schwefel functions with 100

processors). This indicates that using a heterogeneous DGA

(which did not involve any parameter tuning) is competitive

with parameter tuning.

The improvement in results as the number of processors was

increased from 16 processors to 100 processors indicates that

while 16 random configurations appears to be sufficient for the

heterogeneous DGA to perform competitively some problems

(Rastrigin and Griewangk), increasing the number of random

configurations available does indeed lead to particularly good

configurations being discovered, as suggested by the runtime

distribution results in Section III.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35

fi
tn

e
s
s

seconds

best homogeneous
heterogeneous

average homogeneous

Fig. 11. Griewangk function with 100 processors

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35

fi
tn

e
s
s

seconds

best homogeneous
heterogeneous

average homogeneous

Fig. 12. Rastrigin function with 100 processors

VI. RELATED WORK

In essence, a heterogeneous DGA is a strategy which seeks

to minimize the risk associated with committing to a single,

poor set of parameter values for the entire cluster by relying

on a diversity of parameter settings. The rational allocation of

resources among a set of algorithm is known as an algorithm

portfolio [11], [12], which has been previously applied to

sequential genetic algorithms [8]. The differences between a

heterogeneous DGA and an algorithm portfolio are that (1) in

an algorithm portfolio, computational resources are allocated

among candidate algorithms based on the components of

an algorithm portfolio according to statistical performance

profiles of the algorithms on other problem instances, and

(2) the components of an algorithm portfolio are executed

completely independently and do not communicate. In con-

trast, the processes (populations) in a heterogeneous DGA,

communicate via migration. The practice of running multiple

algorithmic configurations in parallel has been shown to be

effective for heuristic search algorithms, and has been called

dovetailing [13]. In dovetailing, the parallel algorithms run

independently and do not cooperate by exchanging candidate

solutions or partial solutions.

825

Our heterogeneous DGA is similar to recent work on paral-

lel hyper-heuristics by Bianzzini et al[14]. In a parallel hyper-

heuristic, each island (processor) executes an iteration of some

heuristic, and passes the result of executing heuristics among

the islands. Our work differs in several respects. Bianzzini et

al [14] use a set of 8 heuristics (6 different configurations

of differential evolution, a particle swarm optimization, and

a random search algorithm). All of the population-based

heuristics (DE and PSO) use the same population size If

there are more than 8 processors, some processors will be

executing duplicate heuristics – this duplication is not a

problem because hyper-heuristics operate by rapidly passing

the output of each heuristic as the input of another heuristic.

They investigate various strategies for dynamically reassigning

the 8 candidate heuristics to each processor. Similarly, Leon et

al apply a dynamically reconfiguring, parallel hyper-heuristic

to 2D packing [15].

In some sense, our heterogeneous DGA is at the opposite

end of the spectrum as the work on parallel hyperheuristics

[14], [15]. Our focus is on an extremely simple, static, random-

ized strategy. We statically assign a randomly generated GA

configuration to each processor, so there is greater diversity

in the algorithmic configurations that are used (compared to

[14], [15]), but the configurations are not changed during the

run. Communications (migration) in our heterogeneous DGA

is infrequent, and occurs only when a local elite is updated.

Instead of dynamic reconfiguration, we have focused on how

well a simple, static, random assignment of configurations to

processors can perform compared to a tuned, standard homo-

geneous DGA. An empirical comparison of these contrasting

approaches is an interesting avenue for future research.

The parameter-less GA is an approach to eliminating pa-

rameter tuning in GAs [16]. In this approach, Harik and Lobo

first “eliminate” some parameters by arguing (based on schema

theory) that selection rate and crossover rate should be set to

a constant setting for all problems, and turning off mutation

completely. The remaining, single parameter is population

size. They execute a race among multiple populations of

various sizes. Smaller populations are killed and replaced by

larger populations when it no longer seems worthwhile to

continue running the small population. Although this work

was implemented sequentially, the racing populations could

be implemented in parallel. The heterogeneous DGA can be

seen as a different type of “parameter-less”, parallel GA.

While Harik and Lobos fixed selection rate and crossover

rates at particular values, we simply use a range of reasonable

parameters and randomly sample from this range.

Berntsson proposes an adaptive parallel approach where

multiple island-model DGAs are run simultaneously (in par-

allel) [17]. That is, at any time, there are multiple island

model DGAs executing in parallel, each of the island DGAs

is independent, and each island DGA has a different number

of islands, different population size. Unsuccessful DGAs are

killed and restarted with different parameters. This approach

focuses on the number of islands and island sizes (popula-

tions), and uses identical mutation rates and crossover rates

across all islands of all of the DGAs.

Numerous approaches to self-adaptive genetic algorithms

have been proposed. Many of these approaches, are surveyed

in [2]. Although much of the work on self-adaptive strategies

has been for sequential, evolutionary algorithms they can be

generalized to parallel implementations; some researchers have

worked on adaptive methods have been developed island-

model evolutionary algorithms (c.f., [18]). However, most of

these adaptive approaches involve some meta-level control

parameters which control the on-line adaptation, so they are

not parameter-free, and it is not yet clear how well any of

these techniques will perform for an arbitrary problem. In

contrast, our heterogeneous DGA approach is motivated by

risk-aversion, and is specifically intended for cases where

prior knowledge is unavailable. We do not try to actively

automatically tune the system, but take a completely passive

approach: Based on our observations of runtime distributions

in Section III, we rely on random assignment of parameters

to assign good control parameter settings to some of the

processors.

VII. DISCUSSION AND DIRECTIONS FOR FUTURE WORK

This paper explores the use of an extremely simple, ran-

domized strategy for setting control parameters in a distributed

genetic algorithms, where a different, random set of control

parameter values (mutation rate, crossover rate, population) are

used on every processor in an island-model distributed GA.

Our results show that with a sufficient number of processors,

this naive, heterogeneous island-model distributed GA strategy

performs comparably to the results of a tuned, standard

island-model GA (the best homogeneous configuration). This

suggests that in applications where time and resources are

limited, our simple method can be a viable method for

configuring a distributed GA without parameter tuning. This

is attractive in situations where there is no time available for

tuning/experimentation, or where tuning experiments would

incur monetary costs (e.g., cloud computing).

Heterogeneous distributed GAs exploit the fact that with a

sufficient number of processors, it is likely that at least some

of the processors will end up being assigned a set of random

control parameters which performs particularly well on a given

problem. Therefore, the approach does not involve any meta-

level learning or automated online parameter tuning. While nu-

merous approaches to automated GA parameter configuration

have been previously proposed, our naive method is attractive

because of its simplicity. Although it is quite possible that

a more sophisticated automated configuration methods could

be adapted to perform well for a distributed GA, we believe

that due to its extreme simplicity, the heterogeneous DGA

proposed here can be considered a new baseline for evaluating

more sophisticated approaches.

While these results appear promising, there are several

directions for future work. For example, the impact of com-

munication (migration) policies on the effectiveness of the

heterogeneous DGA needs to be clarified. Another direction

for future work is to investigate the impact of constraining

826

and biasing the randomly generated parameter values. In our

experiments, there were relatively few parameters (population

size, mutation rate, crossover rate), and we tried to allow the

heterogeneous DGA to sample from a broad range of values.

It is possible that different sets of constraints and biases could

significantly affect the performance of a heterogeneous DGA.

It is also possible that using a more sophisticated GA at

each node which uses a larger number of control parameters

could affect how a heterogeneous DGA performs relative to a

homogeneous DGA.

ACKNOWLEDGMENTS

This research was supported by the JSPS CompView

GCOE, the Okawa Foundation, and a JSPS Grant-in-Aid for

Young Scientists.

REFERENCES

[1] E. Cant’u-Paz, “Parameter setting in parallel genetic algorithms,” in Pa-

rameter setting in evolutionary algorithms, ser. Studies in Computational
Intelligence, L. F, L. C, and M. Z, Eds. Springer, 2007, pp. 259–276.

[2] S. Meyer-Nieberg and H.-G. Beyer, “Self-adaptation in evolutionary
algorithms,” in Parameter setting in evolutionary algorithms, ser. Studies
in Computational Intelligence, L. F, L. C, and M. Z, Eds. Springer,
2007, pp. 121–142.

[3] E. Cant’u-Paz, “Migration policies, selection pressure, and parallel
evolutionary algorithms,” Journal of Heuristics, vol. 7, no. 4, pp. 311–
334, 2001.

[4] L. Araujo, J. J. M. Guervós, A. Mora, and C. Cotta, “Genotypic
differences and migration policies in an island model,” in Genetic and

Evolutionary Computation Conference (GECCO), 2009, pp. 1331–1338.

[5] D. Wolpert and W. G. Macready, “No free lunch theorems for optimiza-
tion,” IEEE Trans. Evolutionary Computation, vol. 1, no. 1, pp. 67–82,
1997.

[6] C. P. Gomes, B. Selman, N. Crato, and H. A. Kautz, “Heavy-tailed
phenomena in satisfiability and constraint satisfaction problems,” J.

Autom. Reasoning, vol. 24, no. 1/2, pp. 67–100, 2000.

[7] A. S. Fukunaga, “Restart scheduling for genetic algorithms,” in Proc.

Parallel Problem Solving from Nature (PPSN V, Lecture Notes in

Computer Science 1498), 1998, pp. 357–366.

[8] A. Fukunaga, “Genetic algorithm portfolios,” in Proc. IEEE Congress

on Evolutionary Computation, 2000.

[9] D. Knuth, The Art of Computer Programming, 2nd ed. Addison Wesley,
1998, vol. 3.

[10] L. Graham, H. Masum, and F. Oppacher, “Statistical analysis of heuris-
tics for evolving sorting networks,” in Prceedings of GECCO, 2005, pp.
1265–1270.

[11] B. Huberman, R. Lukose, and T. Hogg, “An economics approach to hard
computational problems,” Science, vol. 275, no. 5296, pp. 51–54, 1997.

[12] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artifial Intelligence,
vol. 126, no. 1-2, pp. 43–62, 2001.

[13] R. A. Valenzano, N. R. Sturtevant, J. Schaeffer, K. Buro, and A. Kishi-
moto, “Simultaneously searching with multiple settings: An alternative
to parameter tuning for suboptimal single-agent search algorithms,” in
ICAPS, 2010, pp. 177–184.

[14] M. Biazzini, B. Bánhelyi, A. Montresor, and M. Jelasity, “Distributed
hyper-heuristics for real parameter optimization,” in Genetic and Evo-

lutionary Computation Conference (GECCO), 2009, pp. 1339–1346.

[15] C. León, G. Miranda, and C. Segura, “A memetic algorithm and a
parallel hyperheuristic island-based model for a 2D packing problem,”
in Genetic and Evolutionary Computation Conference (GECCO), 2009,
pp. 1371–1378.

[16] G. R. Harik and F. G. Lobo, “A parameter-less genetic algorithm,” in
Genetic and Evolutionary Computation Conference (GECCO), 1999, pp.
258–265.

[17] J. Berntsson, “G2DGA: an adaptive framework for internet-based
distributed genetic algorithms,” in Proceedings of the GECCO 2005

workshops on Genetic and evolutionary computation. New York, NY,
USA: ACM, 2005, pp. 346–349.

[18] J. Tang, M.-H. Lim, and Y.-S. Ong, “Adaptation for parallel memetic
algorithm based on population entropy,” in Genetic and Evolutionary

Computation Conference (GECCO), 2006, pp. 575–582.

827

