
Iterative Resource Allocation for Memory Intensive Parallel Search Algorithms on
Clouds, Grids, and Shared Clusters

Alex Fukunaga
The University of Tokyo

Akihiro Kishimoto
Tokyo Institute of Technology

Adi Botea∗

IBM Research, Dublin, Ireland

Abstract

The increasing availability of “utility computing” resources
such as clouds, grids, and massively parallel shared clusters
can provide practically unlimited processing and memory ca-
pacity on demand, at some cost per unit of resource usage.
This requires a new perspective in the design and evalua-
tion of parallel search algorithms. Previous work in paral-
lel search implicitly assumed ownership of a cluster with a
static amount of CPU cores and RAM, and emphasized wall-
clock runtime. With utility computing resources, trade-offs
between performance and monetary costs must be consid-
ered. This paper considers dynamically increasing the usage
of utility computing resources until a problem is solved. Effi-
cient resource allocation policies are analyzed in comparison
with an optimal allocation strategy. We evaluate our iterative
allocation strategy by applying it to the HDA* parallel search
algorithm. The experimental results validate our theoretical
predictions. They show that, in practice, the costs incurred
by iterative allocation are reasonably close to an optimal (but
a priori unknown) policy, and are significantly better than the
worst-case analytical bounds.

1 Introduction
Cloud computing resources such as Amazon EC2, which
offer computational resources on demand, have become
widely available in recent years. In addition to cloud
computing platforms, there is an increasing availability of
massive-scale, distributed grid computing resources such
as TeraGrid/XSEDE, as well as massively parallel, high-
performance computing (HPC) clusters. These large-scale
utility computing resources share two characteristics that
have significant implications for parallel search algorithms.
First, vast (practically unlimited) aggregate, memory and
CPU resources are available on demand. Secondly, resource
usage incurs a direct monetary cost.

Previous work on parallel search algorithms has focused
on makespan: minimizing the runtime (wall-clock time) to
find a solution, given fixed hardware resources; and scalabil-
ity: as resource usage is increased, how are makespan and re-
lated metrics affected? However, the availability of virtually

∗Part of this work was performed when this author was affiliated
with NICTA and The Australian National University.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

unlimited resources at some cost introduces a new context
for parallel search algorithm research where an explicit con-
sideration of cost-performance tradeoffs is necessary. For
scalable algorithms, it is possible to reduce the makespan by
allocating more resources (up to some point). In practice,
this incurs a high cost with diminishing marginal returns.
For parallel A* variants, under-allocating resources results
in memory exhaustion. On the other hand, over-allocation is
costly and undesirable.

It is often noted that memory-intensive search algorithms
such as A* will run out of memory long before time is ex-
hausted. With the vast amounts of aggregate memory avail-
able in utility computing, the cost (monetary funds) can be
the new limiting factor, since one can exhaust funds long be-
fore allocating all of the memory resources available from a
large cloud service provider.

We consider cost-efficient strategies for dynamically al-
locating utility computing resources. After an overview of
utility computing and parallel search (Sections 2–3), we pro-
pose and analyze iterative allocation, a simple strategy that
repeatedly runs a search algorithm with increasing resources
until the problem is solved (Section 4). Bounds on the cost
incurred by iterative allocation, compared to the optimal
cost, are derived (Section 5). For a realistic class of util-
ity computing environments and search problems, the cost
suboptimality of our policy is bounded by a constant factor
as small as 4. That is, we will never pay more than 4 times
the a priori unknown optimal price.

We validate our analysis experimentally by applying it-
erative allocation to the HDA* (Kishimoto, Fukunaga, and
Botea 2009) algorithm (Section 6). Results on classical
planning and multiple sequence alignment problems, run on
3 distinct, massively parallel computing environments, in-
dicate that the costs incurred by iterative allocation are rea-
sonably close to optimal, and significantly better than the
worst-case upper bounds.

2 Utility Computing Services
There are several types of utility computing services, includ-
ing clouds, grids, and shared, massively parallel clusters. In
all of these utility computing services, there is some notion
of an atomic unit of resource usage. In general it is not
possible to request arbitrary amounts of resources from a
utility computing service (e.g., “3 CPU cores and 2345MB

RAM”). Instead, hardware resources are allocated in dis-
crete units, typically called “instances” or “nodes”, which
correspond to actual or virtual machine units.

Definition 1 (Hardware Allocation Unit). A hardware al-
location unit (HAU), is the minimal, discrete resource unit
that can be requested from a utility computing service.1 It
is characterized by a specific number of CPU cores and a
given amount of RAM, e.g., 4 cores and 8GB.

Various HAU types can be available, each with different
performance characteristics and cost.2

In general, commercial clouds such as EC2 tend to have
an immediate HAU allocation model with discrete charges,
while grids and shared clusters tend to be batch-job based
with a continuous cost model. We describe these cost mod-
els below.

2.1 Immediate/Dynamic Hardware Allocation vs.
Batch Job Submission

Typical cloud services such as EC2 provision HAUs to the
user immediately upon request – there is a delay, usually
within 2 minutes, while the user’s VM image is allocated,
loaded and booted (Iosup et al. 2011). After the VM starts
up, the user is free to use the system interactively as desired.
Usage charges apply from the time that the allocated VM
enters a “running” state to when it is stopped/terminated, re-
gardless of the portion of time spent on actual computations.
HAUs can be dynamically added to/removed from a running
cluster of allocated HAUs.

In contrast, in HPC clusters and grids, users typically
submit jobs to a centralized scheduler (resource manager),
where a job is a request (script) specifying an executable
program and the amount of resources to use. The scheduler
decides when the submitted job actually executes (Feitelson
et al. 1997). Usage charges apply for the time consumed by
the user’s job. In this type of model: (1) there are no guar-
antees about (nor fine-grained control over) when a job will
actually get executed (it depends on congestion of the job
queue and resource availability), and (2) jobs are indepen-
dent binary executions - although some scheduling systems
allow dependencies to be specified among submitted jobs,
e.g., “job A must be executed after job B”, communication
of information between jobs must be through the file system.

2.2 Continuous Cost vs. Discrete Cost Models
In a continuous cost model, the cost of resource usage is
a linear function of the amount of resources used. Batch
job based systems such as typical grid and shared cluster
environments usually adopt a continuous cost model.

1Although the industry standard term for a HAU is “instance”
or “node”, we use HAU to avoid confusion with problem instances
and search nodes.

2Amazon EC2 has 13 instance types. They range from “Small”
(a virtual machine with 1.7GB RAM and 1 “virtual core” poten-
tially timesliced/shared with other users, costing $0.09USD/hour),
to “Cluster Compute Eight Extra Large”, a dedicated (exclusive
use, non-shared) machine with 8 cores and 23GB RAM, costing
$1.70USD/hour.

On the other hand, currently, three of the largest com-
mercial cloud service providers (Amazon EC2, Windows
Azure, Google App Engine) all apply a discrete cost model
in which all charges are per “HAU hour”. Usage of a HAU
for any fraction of an hour is rounded up, e.g., a 1 hour,
1 second allocation of a HAU which costs $0.68/hr will
cost $1.36. There are economic and technical reasons for
the use of coarse grained, discrete units (e.g., HAU-hour)
rather than fine-grained units. For example, in contrast to
a HPC cluster where jobs are executed in a shared environ-
ment, cloud services such as EC2 provision virtual machine
(VM) environments running user-specific operating systems
and applications. Fine-grained cost policies would encour-
age users to frequently start/stop VMs, straining the cloud
service provider’s infrastructure.

3 Background: Distributed, Parallel Search

In this paper, we focus on parallel search algorithms for dis-
tributed memory systems. In particular, we focus on de-
centralized, parallel systematic search algorithms which dis-
tribute the search space among the processors, and are guar-
anteed to eventually find a solution, given enough resources.
In this framework for distributed search, the root process ini-
tially generates some seed states (using sequential search)
and assigns them to the available processors. Then, at each
processor, a locally executed search algorithm begins to ex-
plore the descendants of its seed state. Various approaches
to managing the distribution of work among the processors
have been proposed with two main goals: (1) effective load
balancing, and (2) avoiding duplicate work among proces-
sors.

Work stealing is one standard approach which moves
work from busy processors to idle processors. Each pro-
cessor maintains a local work queue. When processor P
generates new work (i.e., new states to be expanded) w,
it places w in QP , the local work queue for P . When
QP is empty, P “steals” work from QP ′ , the work queue
of some other processor P ′. This basic strategy can be
applied to depth-first search algorithms, including simple
depth-first search, branch-and-bound, and IDA*, as well
as breadth-first and best-first search algorithms such as A*
(Rao and Kumar 1987; Powley, Ferguson, and Korf 1993;
Mahanti and Daniels 1993).

While work-stealing is based on “pulling” work from
other processors, an alternative is “pushing” work to other
processors. Algorithms based on hash-based work distri-
bution have a global hash function which maps each state
in the search space to one “owner processor”. Each pro-
cessor has a local open/closed list. When a state is gen-
erated at any processor, its owner is computed using the
hash function, and the state is sent to the open list of its
owner processor. If the hash function is well-behaved, and
the time to generate/evaluate a state is uniform, hash-based
work distribution achieves uniform load balancing. Hash-
based work distribution has been applied to A* and IDA*
variants (Evett et al. 1995; Mahapatra and Dutt 1997;
Kishimoto, Fukunaga, and Botea 2009; Romein et al. 2002).

4 Iterative Allocation for Ravenous
Algorithms

A scalable, ravenous algorithm is an algorithm (1) which
can be executed on an arbitrary number of processors, and
(2) whose memory consumption continually increases until
either a solution is found, or the algorithm terminates (fails)
due to memory exhaustion. For example, HDA* (Kishi-
moto, Fukunaga, and Botea 2009), a parallel variant of A*
based on hash-based work distribution (see above), is a scal-
able, ravenous algorithm.

In contrast, Transposition-Driven Scheduling (TDS)
(Romein et al. 2002), a parallel version of IDA* with a
transposition table (Reinefeld and Marsland 1994), is an
any-space algorithm. Additional memory tends to result in
faster search, but beyond some minimal threshold, memory
exhaustion does not result in algorithm termination.

Algorithm 1 Generic, Iterative Allocation (IA)
numHAUs← 1
while true do

result← Run algorithm a on problem p
if result = solved then

return success
else

numHAUs← Increase(numHAUs)

The iterative allocation (IA) strategy outlined in Algo-
rithm 1 repeatedly runs a ravenous algorithm a until the
given problem is solved. This is very simple, but the key de-
tail is the Increase() function, which decides the num-
ber of HAUs to allocate in the next iteration. We seek a
policy for choosing the number of HAUs allocated on each
iteration of IA which tries to minimize the total cost.

4.1 Analysis of Iterative Allocation: Preliminaries
We present formal properties of the generic allocation pol-
icy. For formal analysis, we make two assumptions.
Assumption 1 (Homogeneous hardware allocation units).
All HAUs used by IA are identical hardware configurations.

While it is possible to mix and match HAUs in some util-
ity computing environments, the use of heterogeneous hard-
ware configurations is beyond the scope of this paper.
Assumption 2 (Monotonicity). If a problem is solved on i
HAUs, then it will be solved on j > i HAUs.

While not always explicitly stated, monotonicity is usu-
ally assumed in the previous work on parallel search. Oth-
erwise, the only way to ensure completeness of a paral-
lel search algorithm would be to increment the number of
HAUs 1 by 1, until the problem is eventually solved. This
can be very inefficient in cases when a problem requires a
large number of HAUs to be solved. In practice, if a prob-
lem fails on a given number of HAUs, the sensible follow-
up step is to increase the resources (especially RAM, in the
case of ravenous algorithms). On the other hand, there may
be pathological cases where, on some problems, the search
overhead (states which are generated using j > i proces-
sors but not by i processors) incurred when using additional

CPUs could grow faster than the extra RAM made available
by using extra HAUs.

The cost to solve a problem is defined in terms of HAU-
hours. When the problem at hand can be solved on v HAUs,
let Tv be the makespan time needed to solve the problem.
In a continuous cost model, common in shared HPC clusters
(Sec. 2.2), the cost of solving the problem on v HAUs is
defined as Tv×v.3 In a discrete cost model, common among
commercial cloud services (Sec. 2.2), the cost is dTve × v.
In the rest of the paper, unless the cost model (continuous
vs discrete) is explicitly stated or clear from the context, our
statements apply to both models.

Definition 2. The minimal width W+ is the minimum num-
ber of HAUs that can solve a problem with a given ravenous
algorithm. The cost incurred by using W+ HAUs is denoted
C+.

Definition 3. Given some cost model, the minimal cost
width W ∗ is the number of HAUs that results in a minimal
cost. When several width values achieve the minimal cost,
W ∗ refers to the smallest such width. The minimal cost (i.e.,
the cost to solve the problem using W ∗ HAUs) is written as
C∗.

If W ∗ is known a priori, a cost-optimal strategy for solv-
ing the problem at hand is trivial: rent W ∗ HAUs in parallel
until the problem is solved. Most of time, however, W+ or
W ∗ are not known a priori. Thus, the best we can hope for
is to develop strategies that approximate the optimal values.

Definition 4 (Nonincreasing search efficiency). Given a
ravenous algorithm, we say that the search efficiency is non-
increasing if the following two conditions hold: (1) If nv

is the number states generated using v HAUs, then nv ≤
nv+1,∀v ≥W+, and (2) Tvv ≤ Tv+1(v + 1),∀v ≥W+.

As the number of HAUs increases, search efficiency typ-
ically decreases because of factors such as an increased
search overhead and communication overhead. While su-
perlinear speed-ups can occur, they are less common in
ravenous algorithms and often indicate an inefficiency in the
underlying, serial version of the algorithm. In any-space
search algorithms, such as IDA* with transposition tables
and TDS, super-linear speed-ups are more common, due to
the fact that extra memory used as a transposition table can
directly speed up the search. In this paper, however, the fo-
cus is on ravenous, memory-intensive algorithms.

Proposition 1. In a continuous cost model, if the search ef-
ficiency is nonincreasing, C∗ = C+ and W ∗ = W+.

Proof. C∗ ≤ C+, by the definition of C∗. From Def-
inition 4 and the fact that W ∗ ≥ W+, TW∗ × W ∗ ≥
TW+ ×W+, which can be re-written as C∗ ≥ C+. It fol-
lows that C∗ = C+, and thus, W ∗ = W+.

In a discrete-cost model, the min-width cost C+ is not
necessarily the same as the minimal cost C∗. For example,
suppose that running a ravenous algorithm using 1 HAU will
exhaust memory, 2 HAUs can solve the problem in 1.3 hours

3Without loss of generality, we assume the cost per HAU-hour
to be 1, slightly simplifying the formulas.

(which is rounded up to 2 hours), and 3 HAUs can solve the
problem in 1 hour. In this case, the min-width is W+ =
2, C+ = 4, but the min-cost C∗ = 3. However, the gap
between C∗ and C+ is relatively small:

Proposition 2. In a discrete cost model, if the search effi-
ciency is nonincreasing, C+ < C∗ +W+.

Proof. C+ = dTW+eW+ and C∗ = dTW∗eW ∗. Accord-
ing to Definition 4, we have that TW+ ×W+ ≤ TW∗ ×W ∗.
This leads to C+ = dTW+eW+ = (TW+ + r)W+ ≤
TW∗ ×W ∗+ rW+ < dTW∗eW ∗+W+ = C∗+W+.

Later, we shall see that under realistic conditions, W ∗ =
W+ and C∗ = C+ in a discrete cost model, regardless of
whether search efficiency is nonincreasing (Sec. 5.1).

Definition 5. The max iteration time E is the maximum ac-
tual (not rounded up) time that an iteration can execute be-
fore at least 1 HAU exhausts memory and fails.

The previous cost definitions are based on a fixed number
of HAUs. On the other hand, IA varies the number of HAUs
dynamically. In a continuous cost model, assuming that IA
allocates vi HAUs at iteration i, the cost incurred by IA is
I =

∑j
i=0 Dvi

vi. Dvi , with i < j, is the time taken to
fail for all but the last iteration. Dvj = svj is the time to
successfully complete the last iteration. In all cases, Dvi ≤
E. In a discrete cost model, times spent by individual HAUs
are rounded up. HAUs will use any spare time left at the
end of one iteration to start the next iteration. Thus, for each
HAU used in solving a problem, the total time spent by that
HAU across all iterations where it participated is rounded
up. The next example clarifies this further.

Example 1 (Cost computation in discrete cost model). A
doubling IA is executed: iteration 0 uses 1 HAU, iteration
1 uses 2 HAUs, iteration 2 uses 4 HAUs. In other words,
one HAU is continuously used in all 3 iterations. One HAU
is used in the last two iterations, and two HAUs partici-
pate only to the last iteration. The cost is $1 per HAU-
hour. Each failed iteration requires .33 hours. The last,
successful iteration requires .25 hours. The total cost is:
1 HAU× d.33 + .33 + .25e hours× $1 + 1 HAU× d.33 +
.25e hrs× $1+ 2 HAU×d.25e hrs× $1 = 1+ 1+ 2 = $4.

Definition 6 (Min-width cost ratio of a strategy). The min-
width cost ratio R+ is defined as I(S)/C+, where I(S) is
the cost of IA (using a particular allocation strategy S) until
the problem is solved, and C+ is the min-width cost.

Definition 7 (Min-cost ratio of a strategy). The min-cost ra-
tio R∗ is defined as I(S)/C∗, where C∗ is the minimal cost.

5 The Geometric (bi) Strategy
Consider a simple strategy where the number of HAUs al-
located on the i-th iteration is dbie , for some b > 1. For
example, the 2i (doubling) strategy doubles the number of
HAUs allocated on each iteration: First, try 1 HAU; if it
fails, try 2 HAUs, then 4 HAUs, and so on.

Suppose the bi strategy solves a problem on the j-th it-
eration, i.e., j = dlogbW+e, where W+ is the min width.

The cost of a geometric allocation strategy with a continuous
cost model is I =

∑j
i=0 Dbib

i. Recall that Dbj = sbj ≤ E
on the successful iteration, and Dbi ≤ E on the failed iter-
ations. By standard manipulations, I ≤ E bj−1

b−1 + sbj b
j . In

the discrete case, I ≤ dEe b
j−1
b−1 + dsbjebj . This latter up-

per bound is obtained by making the pessimistic relaxation
that no spare time is used by a HAU from one iteration to
the next. This explains in part why our experimentally mea-
sured cost ratios are better than the theoretical upper bounds
introduced later in this section.

Next, we specialize the cost ratio analysis to a class of re-
alistic cloud environments and ravenous search algorithms.

5.1 Discrete Cost Model with Fast Memory
Exhaustion

Cloud platforms such as Amazon EC2 and Windows Azure
typically have discrete cost models, where the discrete
billing unit is 1 hour, and fractional hours are rounded up.
This relatively long unit of time, combined with the fast rate
at which search algorithms consume RAM, leads to the fol-
lowing, empirical observation, which has significant practi-
cal implications:

Observation 1. Both the success time and the failure time
are at most 1 billing time unit (1 hour), Dk ≤ E ≤ 1,∀k ≥
1. A direct consequence is that dDke = dEe = 1,∀k ≥ 1.

Currently, the amount of RAM per core on EC2 and Win-
dows Azure ranges from 2 to 8.5 GB per core. Some of
the RAM in each core must be used for purposes other
than search state storage, e.g., the OS, MPI communication
queue, and heuristic tables such as pattern databases. As-
sume (optimistically) that we have 8 GB RAM remaining
after this “overhead” is accounted for. Suppose that a state
requires 50 bytes of storage overall in the system. Gener-
ating at least 46,000 new states per second, which is a rel-
atively slow state generation rate, will exhaust 8 GB RAM
within an hour. Many search applications generate states
much faster than this. For example, A* search on the Fast-
Downward domain-independent planner using bisimulation
merge-and-shrink heuristics generates O(100,000) states per
second on a single core (Nissim, Hoffmann, and Helmert
2011); domain-specific search algorithms (e.g., sliding tiles
puzzle solvers) can generate states even faster.

Thus, many (but not all) search applications will exhaust
the RAM/core in a HAU within a single billing time unit in
modern cloud environments. A single iteration of IA will
either solve a given problem within 1 billing time unit, or
fail (due to RAM exhaustion) within 1 billing time unit.

Observation 1 is not limited to current hardware, and will
continue to apply in the future. Although the total RAM on
a multi-core processor will continue to rise, the number of
cores per processor will also continue to increase, because
of fundamental architectural bottlenecks associated with in-
creased RAM/core (Hennessy and Patterson 2007), so the
amount of RAM per core will only increase moderately (if
at all); furthermore, the speed per core is expected to in-
crease, which will further offset increases in RAM/core so

Cores & Max # Continuous Model Discrete Model
(RAM) per HAUs number of problems solved on iteration Min-Width Cost Ratio (R+) Min-Cost Ratio (R∗) # Solved w. Zero

HAU (cores) 2 3 4 5 6 7 Total Mean SD Max Mean SD Max Cost Overhead
Planning: HPC 12(54GB) 64(768) 2 5 11 3 3 1 25 2.18 0.45 3.34 1.29 0.27 1.88 8
Planning: Commodity 8(16GB) 8(64) 5 1 2 - - - 8 1.62 0.29 2.29 1.04 0.12 1.33 7
Planning: EC2 4(15GB) 16(64) 6 1 1 5 - - 13 1.63 0.25 2.27 1.26 0.25 1.64 6
Mult. Seq. Align: HPC 12(54GB) 64(768) 4 1 - 1 - 2 8 2.02 0.46 2.76 1.54 0.75 3.28 3

Table 1: Summary of IAHDA* on planning and multiple sequence alignment on HPC, Commodity, and EC2 clusters.

that the rate of RAM consumption per core will either re-
main constant or increase in the future.

Our experiments (Sec. 6) validate Observation 1 for all of
our planning and sequence alignment benchmarks. In addi-
tion, HDA* has been observed to exhaust memory within 20
minutes on every planning and 24-puzzle problem studied in
(Kishimoto, Fukunaga, and Botea 2012).
Observation 2. In a discrete cost model with E ≤ 1, the
cost to solve a problem on v HAUs is proportional to v. As
a direct consequence, W+ = W ∗ and thus R+ = R∗.

Remarkably, Observation 2 holds independently of
whether the search efficiency is nonincreasing (Defini-
tion 4). Although we used Def. 4 to obtain general case
results (Propositions 1 and 2), under the stronger condi-
tion that E ≤ 1, all of the results below hold regardless
of whether the search efficiency is nonincreasing.

The cost overhead of IA consists of two components: (1)
unnecessary HAUs allocated on the final, successful itera-
tion, and (2) repeated allocation of HAUs due to failed it-
erations. When the min-width happens to be a power of b,
then the former overhead is 0. In a discrete pricing model,
the latter overhead can be reduced significantly when itera-
tions terminate faster than a single billing unit, and thus u
iterations fit in v < u billing units. Furthermore, with a
sufficiently small E, all iterations can be executed within a
single billing time unit, entirely eliminating the repeated al-
location cost overhead. Indeed, in our experiments below,
for all our planning benchmark problems, all iterations fit in
a single billing time unit.

Let us consider the best, worst and average cases for the
min-cost ratio R+ = R∗. Clearly, in the best case, R∗ =
R+ = 1. Recall Example 1. Since E < 1 hour, if the
minimum width W+ is 4, then I = C+ = C∗ = 4 and
therefore R∗ = R+ = 1.

The worst case is when the (j − 1)-th iteration is barely
insufficient, and on the final j-th iteration, only W+ =
bj−1 + 1 HAUs (out of the bj allocated) are necessary:

R∗
wo = R+

wo =
I

dsW+e(bj−1 + 1)
≤
dEe bj−1

(b−1)
+ dsbj ebj

dsW+e(bj−1 + 1)

=
(bj − 1)

(b− 1)(bj−1 + 1)
+

bj

bj−1 + 1
≤ b

b− 1
+ b =

b2

b− 1

According to Observation 2, the average case is when the
number of required HAUs is halfway between the worst and
best cases, i.e., W+ = ((bj−1+1)+bj)/2 of the HAUs allo-
cated on the final, j-th iteration are necessary. With a similar

computation as for R∗wo, we obtain the following average-
case upper bound:

R
∗
avg = R

+
avg =

I

dsW+e(bj + bj−1 + 1)/2
≤

2b2

b2 − 1

Observation 3. When E ≤ 1, the worst case bound R∗wo ≤
b2/(b− 1) is minimized by the doubling strategy (b = 2).

As b increases above 2, making the iterative allocation
more aggressive, the upper bound for R∗avg improves, but
the worst case gets worse. Therefore: the simple, doubling
strategy is the natural allocation policy to use in practice.

Note that for the doubling strategy (2i), the average case
ratio is bounded by 8/3 ≈ 2.67, and the worst case cost ratio
does not exceed 4. In other words, with the simple doubling
strategy in a discrete cost model when E ≤ 1, we will never
pay more than 4 times the optimal cost that we would have
paid if we knew the optimal width in advance.

6 Experimental Results
We experimentally evaluate iterative allocation applied to
HDA* (IAHDA*). We focus on the doubling strategy,
for the reasons outlined in the previous section. Domain-
independent planning and multiple sequence alignment
problems are solved on 3 parallel clusters: (1) HPC - a large-
scale, high-performance computing cluster, where each
HAU has 12 cores (Intel Xeon 2.93GHz), 4.5GB RAM/core,
and a 40GB Infiniband network. (2) Commodity - a clus-
ter of commodity machines, where each HAU has 8 cores
(Xeon 2.33GHz) and 2GB RAM/core, and a 1Gbps (x3,
bonded) Ethernet network. (3) EC2 - Amazon EC2 cloud
cluster using the m1.xlarge (“Extra Large” instance)
HAU, which have 4 virtual cores, (3.75GB RAM per core,
and an unspecified network interconnect).

The EC2 configuration is a less favorable environment
than the HPC and Commodity clusters because of physical
processor sharing with other users, and highly variable net-
work performance (Wang and Ng 2010; Iosup et al. 2011).
Although Amazon offers higher-performance (more expen-
sive) HAUs intended for high-performance scientific com-
puting (i.e., “Cluster Compute” instances), we intentionally
selected this particular configuration in order to evaluate the
behavior of IAHDA* under adverse conditions. Boot times
for newly allocated HAUs before each iteration, required in
a fully automated script for a cloud environment such as
EC2, are not included in the times we report. All the newly
allocated HAUs boot in parallel, and there is no charge while
waiting for allocation to succeed. Booting our unoptimized

VM image on EC2 currently takes around 30 seconds. Opti-
mizing the Linux VM image with standard OS configuration
techniques can reduce this further.

We evaluated IAHDA* for domain-independent plan-
ning on a Fast-Downward based planner using the merge-
and-shrink (M&S) heuristic (Helmert, Haslum, and Hoff-
mann 2007). We use 7 standard benchmark domains: De-
pot, Driverlog, Freecell, Logistics, Mprime, Pipesworld-
Notankage, Pipesworld-Tankage (142 problems total).
These are domains where the M&S “HHH” heuristic we
used is competitive with the state of the art (Nissim, Hoff-
mann, and Helmert 2011).

We also evaluated IAHDA* on multiple sequence align-
ment (MSA) using the variant of HDA* in (Kobayashi,
Kishimoto, and Watanabe 2011), without the weighted-A*
preprocessing/upper-bounding step. The test set consisted
of 28 standard alignment problems for 5-9 sequences (HPC
only).

For each problem, on each cluster, the min-width W+ was
found by incrementing the number of HAUs until the prob-
lem was solved. We evaluate the data under both the contin-
uous and discrete cost models: For both the continuous and
discrete models, we computed the min-width cost ratio R+.
In the discrete model, we assume the industry standard 1
hour granularity. In all our test problems, max iteration time
E (Def 5) turns out to be less than 1 hour. Thus, by Obser-
vation 2, discrete R∗ = R+ (the number of HAUs which
minimizes cost is equal to min-width).

Table 1 summarizes the results. For all 3 clusters, we
only consider problems which required ≥ 2 iterations on
that cluster. For each system, we show how many prob-
lems were solved using exactly i iterations for each 2 ≤ i ≤
log2(Max#HAU’s), as well as the total number of problems
solved using ≥ 2 iterations. For both the continuous and
discrete cost models, we show the mean, standard deviation,
min, and max values of the min-width cost ratio R+ or min-
cost ratio R∗ (see above). The column “# solved with zero
overhead” shows the number of problems where the discrete
R∗ = 1. Details for individual runs (for solved problems)
on HPC and EC2 are shown in Tables 2-3. Details for indi-
vidual runs on Commodity are not shown due to space, but
are qualitatively similar to the HPC results, as indicated by
the aggregate results in Table 1.

From the experimental results (Tables 1-3), we observe:
(a) The mean discrete min-cost ratios R∗ for all problems,
on all 3 clusters (Table 1) is significantly less than the theo-
retical worst case bound (4.0) and average case bound (2.67)
for the doubling strategy (Sec. 5.1); The continuous min-
width cost ratio R+ was never higher than 3.34.
(b) For all our benchmarks, E < 1, satisfying the conditions
of Sec. 5.1. On all planning problems, all iterations were
performed within a single billing time unit (hour). Further-
more, on some problems, W ∗ is a power of 2, and the dis-
crete R∗ = 1.0, i.e., no additional cost was incurred by IA,
compared to the optimal (minimal) cost.
(c) IAHDA* displays nonincreasing search efficiency be-
havior (Def 4) on HPC and Commodity (verified for all
runs on these systems). This strongly suggests that on these
clusters, Prop. 1 applies, and continuous model R+ = R∗.

On the other hand, some iterations on EC2 sometimes took
longer than later, (failed) iterations. This is most likely due
to the extreme variability in network performance (Wang
and Ng 2010).

7 Related Work
There is little prior work on cost-based analysis of search
algorithms in a utility computing environment. An experi-
mental investigation of a cloud-based portfolio for stochas-
tic planning algorithms is in (Lu et al. 2011). Work on re-
source allocation in utility computing services has focused
on the service provider’s perspective, i.e., resource manage-
ment/scheduling (Feitelson et al. 1997; Garg, Buyya, and
Siegel 2010). In contrast, we investigate efficient resource
usage from an end-user’s perspective.

The main idea of IA, i.e., repeatedly running a search
algorithm with increasing machine resources, is related to
other approaches which iteratively apply a search algorithm
with an increasing bounds/threshold on some parameter,
such as iterative deepening (Korf 1985). Prior approaches to
parallel search have focused on mechanisms for effectively
using a limited amount of memory. For example, TDS is a
parallel IDA* which uses hash-based work distribution and
a distributed transposition table (Romein et al. 2002), and
PRA* is a parallel A* which uses node retraction mecha-
nism when memory is exhausted (Evett et al. 1995).

Iterative Allocation differs fundamentally from these pre-
vious approaches by dynamically allocating hardware re-
sources on demand. Techniques such as transposition tables
and node retraction, which seek to reuse limited memory
given static resources, incur significant overhead in terms of
search efficiency and wall-clock time. The performance of
TDS and PRA* degrades as the gap between the amount of
physical RAM vs. the size of the search space grows.

On the other hand, IA incurs wall-clock time and mone-
tary overheads because of work that is discarded after each
iteration as well as the difference between the width of the
final iteration and the minimal width. Furthermore, the ef-
fectiveness of IA requires that the underlying search algo-
rithm (such as HDA*) continues to scale well as the amount
of resources allocated is increased. A quantitative compari-
son of the various tradeoffs made by IA and static-resource
approaches such as TDS is an area for future work.

8 Discussion and Conclusions
This paper explored some implications of having access to
vast (but costly) resources for parallel search algorithms.
We analyzed a general, iterative resource allocation strategy
for scalable, memory-intensive search algorithms, including
parallel A* variants such as HDA*. We presented bounds
on the relative cost of a simple, geometric allocation policy,
compared to an (a priori unknown) optimal allocation. Un-
der realistic assumptions and a discrete pricing model used
in commercial clouds such as Amazon EC2 and Windows
Azure, we showed that the average and worst case cost ra-
tios for a doubling strategy were at most 2.67 and 4, respec-
tively. While our analysis primarily focused on cost ratio

Min-Width Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Total R+ R∗

Problem Cores Time 12 cores 24 cores 48 cores 96 cores 192 cores 384 cores 768 cores Time Continuous Discrete
Domain-Independent Planning
Depot-pfile16 96 706 445 544 616 706 2311 1.71 1.00
Driverlog-pfile13 60 167 200 228 325 104 856 3.34 1.60
Freecell-pfile9 192 521 422 481 510 575 521 2509 1.96 1.00
Freecell-pfile6 24 389 429 389 818 1.55 1.00
Freecell-pfile11 96 459 435 467 474 459 1835 1.89 1.00
Freecell-pfile12 276 582 422 493 486 550 576 412 2939 2.25 1.39
Freecell-5-1 108 897 402 530 626 764 496 2818 2.23 1.78
Freecell-5-2 72 753 441 600 673 570 2285 1.97 1.33
Freecell-5-3 72 653 522 593 817 477 2409 2.24 1.33
Freecell-5-4 72 691 484 573 727 534 2319 2.12 1.33
Freecell-5-5 84 953 470 553 682 807 2512 1.61 1.14
Logistics00-8-1 36 362 448 463 268 1179 2.25 1.33
Logistics00-9-0 48 272 406 527 272 1205 2.34 1.00
Mprime-prob15 48 323 236 307 323 865 1.66 1.00
Pipesworld-Notankage-p18 36 218 248 258 164 669 2.17 1.33
Pipesworld-Notankage-p20 60 247 255 289 333 163 1039 2.80 1.60
Pipesworld-Notankage-p25 384 406 316 341 368 394 471 406 2296 2.01 1.00
Pipesworld-Notankage-p27 636 313 316 337 357 380 452 469 252 2563 2.65 1.21
Pipesworld-Notankage-p32 60 286 282 301 327 185 1094 2.57 1.60
Pipesworld-Notankage-p33 156 362 294 325 339 365 286 1609 2.08 1.23
Pipesworld-Notankage-p35 204 305 249 283 292 311 332 172 1638 2.94 1.88
Pipesworld-Tankage-p09 36 704 634 777 526 1937 2.03 1.33
Pipesworld-Tankage-p10 24 710 652 710 1362 1.46 1.00
Pipesworld-Tankage-p14 60 297 252 239 360 196 1047 2.52 1.60
Pipesworld-Tankage-p22 72 394 299 347 364 289 1299 2.02 1.33
Multiple Sequence Alignment
MSA 08 BB12003 24 2982 3193 2982 6175 1.54 1.50
MSA 09 BB12032 36 4061 3765 4592 3050 11408 2.06 1.50
MSA 07 BBS11026 432 3115 1978 2233 2458 2650 2847 3000 1739 16905 2.59 3.28
MSA 05 BB11035 636 892 656 699 705 733 781 792 758 5122 2.05 1.28
MSA 05 BB12009 108 694 652 702 733 760 388 3234 2.77 1.78
MSA 05 BB12019 24 741 741 741 1482 1.50 1.00
MSA 05 BB12023 24 550 728 550 1279 1.66 1.00
MSA 05 BBS11037 24 372 716 372 1088 1.96 1.00

Table 2: Detailed results for domain-independent planning and multiple sequence alignment (MSA) on the HPC cluster. Solved problems
that required ≥ 2 iterations are shown. R+ = “min-width cost ratio”, R∗ = “min-cost ratio”.

bounds for the more interesting, discrete cost model, similar
derivations can be applied to the continuous cost model.

Experiments with planning and sequence alignment val-
idated the theoretical predictions, and showed that the cost
ratios can be quite low, showing that IA with a doubling
policy is a reasonable strategy in practice. For our domain-
independent planning benchmarks, under a discrete pricing
model typical for commercial clouds, there was no cost over-
head due to repeated allocations because all iterations were
completed within a single billing unit (hour), and the only
cost overhead was due to the difference between the num-
ber of instances “guessed” by IA on the final iteration and
the actual, optimal allocation. Domain-specific solvers for
standard search domains such as the sliding tiles puzzle have
even higher state generation rates and exhaust memory faster
than our benchmarks, providing a greater opportunity to run
multiple iterations within one billing time unit.

While our experiments applied IA to HDA*, our theoret-
ical analysis is quite general, and applies to any scalable,
ravenous algorithm that satisfies the assumptions, includ-

ing, for example, scalable work-stealing A* or breadth-first
search implementations.

IA is simple to implement as a script on top of any scal-
able ravenous algorithm. The downside of this simplicity is
that IA discards all work done in previous iterations. While
we showed that total overhead of IA is quite low (and can
even be zero), there are cases where more efficiency is re-
quired. It is possible to start a new iteration from the exist-
ing open and closed lists, after re-distributing these among a
larger number of CPUs available in the new iteration. This
requires significant modifications of the underlying parallel
search algorithm, and is an area for future work.

This paper focused on the analysis and evaluation of
the monetary cost of IA. Since iterations terminate quickly
due to fast RAM consumption (Observation 1), the wall-
clock runtime of ravenous algorithms using IA tends to be
short, and budget and resource availability limitations will
tend to be a more significant concern than excessive run-
times. The hardest planning problem in our experiments,
Pipesworld-Notankage-36 (Table 2), required 7 itera-

Min-Width Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Total R+ R∗

Problem Cores Time 4 cores 8 cores 16 cores 32 cores 64 cores Time Continuous Discrete
Freecell-pfile6 40 750 366 603 677 571 511 2727 2.27 1.60
Freecell-pfile7 8 585 422 585 1007 1.36 1.00
Logistics00-7-1 8 495 432 495 927 1.44 1.00
Logistics00-8-1 44 1297 337 516 595 577 941 2966 1.64 1.45
Logistics00-9-0 48 1116 328 469 530 489 838 2654 1.55 1.33
Logistics00-9-1 12 584 353 436 498 1287 1.84 1.33
Mprime-prob30 8 423 420 423 843 1.50 1.00
Pipesworld-Notankage-p16 8 255 275 255 529 1.54 1.00
Pipesworld-Notankage-p18 44 525 215 319 361 326 389 1610 1.93 1.45
Pipesworld-Notankage-p19 8 223 227 223 450 1.51 1.00
Pipesworld-Notankage-p24 8 305 305 305 611 1.50 1.00
Pipesworld-Tankage-p09 44 1750 419 811 879 797 1265 4170 1.67 1.64
Pipesworld-Tankage-p10 32 1558 441 852 921 1558 3772 1.47 1.12

Table 3: Detailed results for domain-independent planning on EC2 m1.xlarge HAUs. Solved problems that required ≥ 2 iterations are
shown. R+ = “min-width cost ratio”, R∗ = “min-cost ratio”.

tions of IA, and the 7th iteration used 768 cores and 3.456
terabytes of RAM on the HPC cluster (the min-width was
53 HAUs = 636 cores, 2.9TB RAM). Extrapolating from
this, a hypothetical 2-hour long run of IAHDA* on a harder
planning problem from the same class would execute 13 it-
erations, where the final iteration of this would use 49,152
cores and 221 terabytes of RAM, which is unaffordable to-
day. While resources will become cheaper in the future, the
exponential growth of resource usage by successive itera-
tions of IA means that the maximum wall-clock time for IA
will be limited in practice. Comparison of the tradeoff be-
tween wall-clock time and resource usage for IA vs. strate-
gies that use static resources (e.g., parallel IDA* variants) is
an area for future work.

Acknowledgements
This research is supported by the JST PRESTO program and
a grant from JSPS.

References
Evett, M.; Hendler, J.; Mahanti, A.; and Nau, D. 1995. PRA∗:
Massively Parallel Heuristic Search. Journal of Parallel and Dis-
tributed Computing 25(2):133–143.
Feitelson, D. G.; Rudolph, L.; Schwiegelshohn, U.; Sevcik, K. C.;
and Wong, P. 1997. Theory and practice in parallel job scheduling.
In Feitelson, D. G., and Rudolph, L., eds., JSSPP, volume 1291 of
Lecture Notes in Computer Science, 1–34. Springer.
Garg, S. K.; Buyya, R.; and Siegel, H. J. 2010. Time and cost
trade-off management for scheduling parallel applications on util-
ity grids. Future Generation Computer Systems 26(8):1344 – 1355.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible Abstrac-
tion Heuristics for Optimal Sequential Planning. In Proceedings of
the Seventeenth International Conference on Automated Planning
and Scheduling ICAPS-07, 176–183.
Hennessy, J., and Patterson, D. 2007. Computer architecture: a
quantitative approach, 4th ed. Morgan Kaufmann.
Iosup, A.; Ostermann, S.; Yigitbasi, N.; Prodan, R.; Fahringer, T.;
and Epema, D. H. J. 2011. Performance analysis of cloud com-
puting services for many-tasks scientific computing. IEEE Trans.
Parallel Distrib. Syst. 22(6):931–945.

Kishimoto, A.; Fukunaga, A.; and Botea, A. 2009. Scalable, Par-
allel Best-First Search for Optimal Sequential Planning. In Proc.
ICAPS, 201–208.
Kishimoto, A.; Fukunaga, A.; and Botea, A. 2012. Eval-
uation of a simple, scalable, parallel best-first search strategy.
arXiv:1201.3204v1. http://arxiv.org/abs/1201.3204.
Kobayashi, Y.; Kishimoto, A.; and Watanabe, O. 2011. Evaluations
of Hash Distributed A* in Optimal Sequence Alignment. In Proc.
IJCAI, 584–590.
Korf, R. 1985. Depth-first iterative deepening: An optimal admis-
sible tree search. Artificial Intelligence 97:97–109.
Lu, Q.; Xu, Y.; Huang, R.; Chen, Y.; and Chen, G. 2011. Can
cloud computing be used for planning? an initial study. In Proc.
IEEE CloudCom.
Mahanti, A., and Daniels, C. 1993. A SIMD Approach to Parallel
Heuristic Search. Artificial Intelligence 60:243–282.
Mahapatra, N., and Dutt, S. 1997. Scalable Global and Local Hash-
ing Strategies for Duplicate Pruning in Parallel A* Graph Search.
IEEE Trans. on Parallel and Distributed Systems 8(7):738–756.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Computing
perfect heuristics in polynomial time: On bisimulation and merge-
and-shrink abstraction in optimal planning. In Proc. IJCAI, 1983–
1990.
Powley, C.; Ferguson, C.; and Korf, R. 1993. Depth-first heuristic
search on a SIMD machine. Artificial Intelligence 60:199–242.
Rao, V. N., and Kumar, V. 1987. Parallel Depth-First Search on
Multiprocessors Part I: Implementation. International Journal of
Parallel Programming 16(6):479–499.
Reinefeld, A., and Marsland, T. A. 1994. Enhanced iterative-
deepening search. IEEE Trans. Pattern Anal. Mach. Intell.
16(7):701–710.
Romein, J. W.; Bal, H. E.; Schaeffer, J.; and Plaat, A. 2002. A Per-
formance Analysis of Transposition-Table-Driven Work Schedul-
ing in Distributed Search. IEEE Transactions on Parallel and Dis-
tributed Systems 13(5):447–459.
Wang, G., and Ng, T. S. E. 2010. The impact of virtualization on
network performance of Amazon EC2 data center. In Proc. IEEE
INFOCOM.

