
Motion-Synthesis Techniques for 2D Articulated Figures

Alex Fukunaga
Harvard University

Lloyd Hsu
Harvard University

Peter Reiss
Harvard University

Andrew Shuman
Harvard University

Jon Christensen
Harvard University

Joe Marks
Digital Equipment Corporation

J. Thomas Ngo
Harvard University

Abstract

In this paper we extend previous work on automatic motion syn-
thesis for physically realistic 2D articulated figures in three ways.
First, we describe an improved motion-synthesis algorithm that
runs substantially faster than previously reported algorithms. Sec-
ond, we present two new techniques for influencing the style of
the motions generated by the algorithm. These techniques can
be used by an animator to achieve a desired movement style, or
they can be used to guarantee variety in the motions synthesized
over several runs of the algorithm. Finally, we describe an anima-
tion editor that supports the interactive concatenation of existing,
automatically generated motion controllers to produce complex,
composite trajectories. Taken together, these results suggest how a
usable, useful system for articulated-figure motion synthesis might
be developed.

CR Categories: I.2.6 [Artificial Intelligence]: Learning—
parameter learning. I.2.6 [Artificial Intelligence]: Problem Solv-
ing, Control Methods and Search—heuristic methods. I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
animation. I.6.3 [Simulation and Modeling]: Applications.

Additional Key Words: Spacetime constraints,controller synthesis,
banked stimulus-response (BSR) controllers, stochastic optimiza-
tion, evolutionary computation.

1 Introduction

Automatic motion synthesis for articulated figures is the problem
posed by the Spacetime Constraints (SC) paradigm for animation
[19]. In this paradigm, the animator specifies only the physical
structure of an articulated figure and quantitative criteria for success
in a desired task. The computer must compute physically realistic
motion for the figure that is near optimal1 with respect to the task
criteria.

Early motion-synthesis algorithms used local optimization to
refine initial figure trajectories by making them more compliant
with physical law, or by improving the motion with respect to the
task criteria [1, 19, 2]. However, local optimization has inherent
limitations for this problem: it is usually confounded by the dis-
continuities and local optima found in the search space of a typical
SC problem, and it leaves primary responsibility for constructing
coarse initial trajectories with the human animator.

Recently, a new approach to the motion-synthesis problem has
been proposed. In this approach, the goal is not to compute the fig-

1Because this optimization problem is NP-hard, there exists no polynomial-time
algorithm that is guaranteed to return optimal solutions unless P=NP.

ure’s trajectory directly, but instead to generate a motion controller
that, when executed, will produce the desired motion [10, 9, 16]. In
any particular embodiment of this approach, two broad and nearly
independent choices must be made:

1. how the motion controller is to be represented; and

2. how the space of possible controllers is to be searched.

Van de Panne and Fiume [16] have described one such system
in which the motion controller is a sensor-actuator network (SAN).
In a SAN, the actuators’ responses are interdependent nonlinear
functions of the figure’s physical state variables. Van de Panne and
Fiume search the space of possible controllers in two stages. The
first stage is a random generate-and-test procedure, and the second
stage effects a subsequent refinement by simulated annealing or
stochastic gradient ascent.

In contrast, Ngo and Marks employ a bank of mutually indepen-
dent controllers called stimulus-response (SR) rules. Information
from the physical environment is used principally to determine
which rule is active at any given time in the physical simulation.
We refer to this as a banked stimulus-response (BSR) controller to
distinguish it from the SAN. Ngo and Marks [10, 9] search within
the space of possible BSR controllers using a massively parallel
genetic algorithm (GA).

In this paper we focus on three major shortcomings of the system
described by Ngo and Marks:2

1. The search algorithm is expensive: finding a simple motion
controller for a five-rod articulated figure can take 30–60
minutes on a 4096-processor CM-2 Connection Machine.

2. There is no mechanism to influence the search algorithm: the
algorithm is inherently random, and, in general there is no
way to predict—much less affect—what it will produce in
any given run.

3. The motion generated by a single controller is relatively sim-
ple. The only way to get complex, composite motion is to
concatenate several problem instances in time and to generate
separate motion controllers serially for each subproblem—an
approach similar to one proposed originally by Cohen [2].

In this paper we show how each of these problems can be ad-
dressed. In particular, we present a new search method that runs
substantially faster than the original algorithm. We also present
two techniques that afford the user limited control over the search

2 The most obvious shortcoming, which is not addressed here, is that the method
works only for 2D articulated figures. However, it has been shown recently that the
basic approach can be extended to handle 3D articulated figures and 3D mass-spring
models, albeit at significantly greater computational cost [12].

1

algorithm. An animator can use these techniques to influence di-
rectly the style of the computed motion. They can also be used to
produce a suite of qualitatively different motion controllers for a
given SC problem. Such a selection of different motion controllers
can be passed as input to an animation editor that allows an anima-
tor to concatenate controllers interactively to produce composite
motions. We describe such an editor, and show sample figure tra-
jectories that were created using the techniques described in the
paper.

2 The Original Approach

The system described by Ngo and Marks [10, 9] searches in the
space of BSR controllers using a massively parallel GA that runs on
a 4096-processor CM-2. Although we assume general familiarity
with the approach as described in previous work [10, 9], we now
briefly review the details of the BSR controller and the GA.

A BSR controller governs a vector
��������

of joint angles, given
information about the physical environment in the form of a vector��	���
�

of sense variables. Sample sense variables for an articulated
figure are listed in Table 1.

�
1 � � 2 �������� �����

1 Joint angles�
1 � � 2 �������� �����

1 Contact forces at rod endpoints�
cm Height of center of mass

_� cm Vertical velocity of center of mass

Table 1: Components of the vector
��

of sense variables for an� -rod articulated figure.

The controller contains � stimulus-response rules. Every rule �
is specified by stimulus parameters

�� lo � ��� and
�� hi � ��� , and response

parameters
�� 0 � ��� and � � ��� . Based on the instantaneous value of

the sense vector
��������

, exactly one rule is active at any one time.
In particular, each rule � receives a score based on how far the
instantaneous sense vector

��������
falls within the hyperrectangle

whose corners are
�� lo � � � and

�� hi � ��� . The highest-scoring rule is
said to be marked active. (If

��	���
�
is not inside the hyperrectangle

associated with any rule, the rule active in the previous time step
remains active.) The joint angles

��������
are made to approach the

target values
�� 0 � � active � prescribed by the active rule � active .

The following pseudocode summarizes how a BSR controller
behaves and is evaluated:

Set � active to 1
for

�"!
1 to

�
max

Cause joint angles
��#���
�

to approach
�� 0 � � active �

with time constant � � � active �
Simulate motion for time interval

�
Measure sense variables

������
�
Possibly change � active , based on

��	���
�
end for
Assign the controller a fitness value based on

how well the simulated motion meets the
animator-supplied task criteria

The original search algorithm used by Ngo and Marks was a
massively parallel genetic algorithm (GA). In a GA, a population

do parallel
Randomize genome

end do
for generation = 1 to number of generations

do parallel
Evaluate genome
Select mate genome from a nearby processor
Cross genome with mate genome
Mutate new genome

end do
end for

Figure 1: A parallel GA.

of candidate solutions is subjected to a procedure that simulates
biological evolution. Each candidate solution—each genome, in
GA parlance—has some probability of being mutated, combining
with another genome, and dying, based on its fitness value. In their
generational-replacement GA, presented in Figure 1, each proces-
sor was responsible for evaluating one genome per generation in
parallel.

The most important factor in the success of the GA is the ap-
proach of searching in the space of possible motion controllers,
rather than the space of trajectories. Nevertheless, certain sec-
ondary details of the initial random-generation process, the mate-
selection process, and the crossover and mutate operators can be
important for successful motion synthesis and are described else-
where [10, 9]. Except where noted, we have used the same process
for initial random generation and the same crossover and mutate
operators in the algorithms described here.

3 Accelerating the Search

The match between SIMD massive parallelism and the
generational-replacement GA used by Ngo and Marks seems at
first to be ideal:

$ With one candidate solution per processor, and comparable
processing required for each solution, it appears possible to
keep all the processors busy most of the time.

$ Only local communication between processors is necessary,
obviating the need for expensive global communication in
the processor network.

However, the issue of suitability is more complex [8]:

$ SIMD parallelism is best exploited if the population size is at
least as large as the number of processors in the machine—
4096 on the CM-2 used by Ngo and Marks [10]. However,
4096 is probably too large for this application if the object is
to find solutions of high fitness using the minimum number
of evaluations.

$ A SIMD architecture usually rules out the use of a steady-
state GA, which tends to require fewer evaluations than a
generational-replacement GA to achieve similar levels of fit-
ness [4].

Initialize population
for generation = 1 to number of generations

Evaluate each genome in population
for i = 1 to (size of population / 2)

Select two parent genomes by roulette-wheel selection
Cross & mutate to generate two child genomes

end for
Replace old parent population with new child population

end for

Figure 2: A generational-replacement GA (GGA).

Initialize population
Evaluate each genome in population
Rank order the population
for evaluation = 1 to (number of evaluations / 2)

Select two parent genomes by rank-based selection
Cross & mutate to generate two child genomes
Evaluate the two child genomes
Insert child genomes in order into population
Delete two lowest-ranked genomes in the population

end for

Figure 3: A steady-state GA (SSGA).

$ When nonholonomic constraints (such as those imposed by
the ground) are present, a physical simulator can contain a
high proportion of conditionally executed code, which trans-
lates into idle time on a SIMD machine.

To assess properly the expected computational cost of synthe-
sizing BSR controllers, and to try to discover a better search algo-
rithm that would run on a conventional workstation, we embarked
on an experimental analysis3 of many different stochastic search
algorithms—including both GA and non-GA strategies—for a se-
lection of SC problems. A representative set of algorithms is
described in Figures 2-5.

The salient feature of the generational-replacement GA (Fig-
ure 2) is that the whole genome population gets replaced every
iteration. Parent genomes are selected with a bias toward fitter
individuals. (In particular, the GGA described here employs a
technique called roulette-wheel selection [6].) Two child genomes
are produced from the parents by crossover: one child is a copy
of one parent, and the other is a true hybrid. The child genomes
next undergo mutation. When the population of child genomes
has been generated, it replaces the population of parent genomes
completely. Of the serial algorithms that we tested, this one is the
most like the Ngo-Marks massively parallel GA (Figure 1), though
it contains no analogue to the localized mating scheme found in the
parallel algorithm.

Unlike the GGA, the steady-state GA (Figure 3) replaces at
most two genomes during each iteration. Two parent genomes are
selected with a bias toward fitter individuals. (The SSGA described
here employs a technique called linear rank-based selection [4].)
The resulting child genomes are computed just as in the GGA. They

3This empirical study is described in greater detail elsewhere [5].

Initialize and evaluate a single genome
for evaluation = 1 to number of evaluations

Randomly perturb the genome
Evaluate the new genome
if the new genome is better than the old one then

Replace the old genome with the new one
end if

end for

Figure 4: Stochastic hill climbing (SHC).

Initialize population
Evaluate each genome in population
for generation = 1 to number of generations

for each individual genome in the population
Randomly perturb the genome
Evaluate the new genome
if the new genome is better than the old one then

Replace the old genome with the new one
end for
if (generation mod reseed interval) = 0 then

Rank order the population
Replace bottom 50% of the population with top 50%

end if
end for

Figure 5: Stochastic population hill climbing (SPHC).

are then inserted into the population, displacing the two lowest-
ranked genomes.

The remaining two stochastic algorithms do not employ
crossover (though we still use the terms “genome” and “popu-
lation” for continuity). Stochastic hill climbing (Figure 4) is a
variation on the standard hill-climbing search heuristic in which
a single initial solution is perturbed randomly at each iteration,
and only changes that improve the fitness score are accepted. A
deficiency of the simple SHC algorithm is that the search can be
trapped in a local minimum. Having a population of solutions, as
in stochastic population hill climbing (Figure 5), adds robustness
because of the use of multiple starting points. However, merely
using a population in a simulated parallel search is equivalent to
running a series of shorter, single-solution SHC trials. What distin-
guishes SPHC is the addition of a reseeding operation that provides
a mechanism for a periodic refocusing of the search on the most
promising 50% of the genomes in the population.

We tested each of these algorithms on five different SC prob-
lems that have been described previously [10, 9]. As a benchmark,
we also implemented a simple random generate-and-test (RG&T)
algorithm. Each algorithm was allowed to perform 40,000 evalua-
tions (physical simulations), and the fitness score of the best result
found was recorded.

No empirical comparison of stochastic algorithms is ever com-
plete. Nevertheless, representative results are shown in Figure 6 for
the problem of causing Mr. Star-Man, a five-rod articulated figure,
to travel horizontally (the fitness function is the horizontal distance

Mutation Crossover Reseed
Algorithm Population Rate Rate Interval
RG&T N/A N/A N/A N/A
GGA 200 0.1 0.6 N/A
SSGA 200 0.1 0.6 N/A
SHC 1 1.0 N/A N/A
SPHC 10 1.0 N/A 200

Table 2: Key parameters.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

10000 20000 30000 40000

F
itn

es
s

(m
ea

n
of

 1
0

ru
ns

)

Individuals Evaluated

RG&T
GGA

SSGA
SHC

SPHC

Figure 6: Comparative performance of the algorithms.

moved by the center of mass).4 The key parameters used for the
various algorithms are summarized in Table 2. The crossover and
mutation rates indicate the probabilities with which a component
of the genome will be subject to crossover or mutation each time a
child is generated [10, 9]. Many other combinations of parameter
values were tested, but for each algorithm listed, no better set of
parameters was found for this problem [5]. In addition, various
enhancement to the GAs (such as niching) were tested but were not
found to yield significant improvement [5].

Figure 6 demonstrates the following “pecking order” among the
search algorithms tested:

SHC � SPHC
�

GGA � SSGA
�

RG&T �
These qualitative results also held true for the other four test
problems.5 The success of simple search algorithms such as SHC
and SPHC reinforces the point that the space of controllers is far
easier to search than the space of trajectories.

Why did the hill-climbing approaches outperform the genetic
algorithms in our tests? This phenomenon, which contradicts the
early expectations of the GA community, has been observed in
studies with other optimization problems, and understanding when
it is likely to occur is currently an active area of inquiry [3, 7].

Our study produced two other relevant results. Due to the enor-
mous computational cost that would have been incurred on a CM-2,

4Two typical good solutions to this problem are shown in Figures 8 and 9.
5One of the top performers, SHC, is very similar in form to the stochastic gradient

ascent used by Van de Panne and Fiume [16] to refine SANs. However, in our tests, the
starting point for SHC was always a solution drawn from a random initial distribution,
not one produced by an earlier stage in the search process.

we did not obtain performance data for the Ngo-Marks massively
parallel GA that could be compared quantitatively with the results
given here. Nonetheless, the following clear anecdotal evidence
sheds some light on the relative performance of the parallel algo-
rithm:

$ The parallel GA requires between 200,000 and 850,000 phys-
ical simulations to produce motion controllers comparable to
those produced at a cost of 40,000 simulations by the SPHC
algorithm.

$ The running time of the massively parallel GA is typically 30–
60 minutes on a 4096-processor CM-2 Connection Machine,
versus 3–6 minutes on a DEC 3000/400 AXP workstation.

The original Ngo-Marks algorithm therefore appears to be ex-
tremely inefficient relative to the SPHC algorithm.

The other relevant result concerns the application of standard
function-optimization algorithms to the problem of finding good
BSR controllers for SC problems. We investigated the use of two
techniques, the Downhill Simplex Method of Nelder and Mead,
and Powell’s Method [13]. We found that these deterministic algo-
rithms did not generate good BSR controllers from random start-
ing points. However, in many cases they found small to medium
improvements in solutions originally generated by the SPHC algo-
rithm.

4 Influencing the Search

The second problem we address in this paper is the inability of
the user to influence the search algorithm in any way. This causes
difficulties when the animator has a preconceived idea for how
an animated character should move, but is unable to cause the
search algorithm to generate the expected motion. It is also a
problem when what is required is not just a controller for one kind
of motion, but a suite of controllers for many different kinds of
motion for the same animated character (� 5).

4.1 Additional fitness terms

A concrete instance of this problem is provided by Mr. Star-Man.
Given the task of making Mr. Star-Man travel, the search algorithms
usually find a motion controller that produces a shuffling gait like
the one in Figure 8. Occasionally, when monitoring the progress of
the search, we noticed motion controllers that produced a cartwheel
(Figure 9), but it was rare for the search to converge on such
a controller. We therefore set out to provide some mechanism
whereby we could reliably guide the search toward either the shuffle
or the cartwheel.

One useful mechanism we discovered was to use secondary
terms in the fitness function. The primary term in the fitness func-
tion is the one given the most weight, and is therefore the one that
determines the most salient characteristic of the motion. For exam-
ple, to get Mr. Star-Man to travel, i.e., to move from left to right,
the primary term in the fitness function is the horizontal distance
traversed by his center of mass. The secondary terms, which are
simply added to the primary term in the fitness function, deter-
mine minor characteristics of the motion. The secondary terms we
investigated are given in Table 3. For the sample problem we pro-
posed above, we found that assigning a positive weight only to the

Term Function
max cm height Maximum height of center of

mass during motion
slip sum Distance traversed by body parts

in continuous contact with ground
rotations Number of full-body rotations

during motion

Table 3: Secondary terms in the fitness function.

0

Reach

Gather

t’

Figure 7: Simplified diagram of a BSR controller in which
� �

is the
sole sense variable.

secondary term slip sum guarantees a shuffling gait, whereas as-
signing a positive weight only to the secondary term rotations
guarantees a cartwheel. For our other animated characters, we
found that varying the coefficients of the small set of terms in Ta-
ble 3 was sufficient to generate reliably all motions that we had
ever seen occur at random, plus others. Moreover, the motions
generated correlate qualitatively with the secondary fitness terms:
a positive coefficient for max cm height biases the search in
favor of hopping or jumping motions, a positive coefficient for
slip sum encourages sliding or shuffling, and a positive coeffi-
cient for rotations usually leads to some kind of gyration.

4.2 Different sense variables

The nature of the motions produced by controller synthesisdepends
intimately on the space of controllers made available for search-
ing. (For example, BSR controllers produce motions that are quite
different from those produce by SANs [11, 17].) Thus, the second
way we propose to influence the style of generated motions is to
modify the form of the BSR controller.

We modified the BSR controller by substituting a periodically
resetting timer value

� ��� �
mod

���
for the entire set of physical

sense variables listed in Table 1. (The period
���

is a constant chosen
by the animator.) The effect is to reduce the BSR controller to a
mechanism of the type found in a child’s “wind-up” toy—a device
that executes a sequence of motions repetitively, independent of
the state of the physical environment (Figure 7).

In recent papers [10, 9, 16] it has been argued or assumed that

the space of controllers with access to information about physical
state should be easier to search than the space of controllers based
on time alone. Unexpectedly, we found that good motions are
easier to compute when

� �
is the only sense variable than when

physical sense variables (in our tests, those listed in Table 1) are
used.6 Furthermore, by manually varying the value of the period���

, it is possible to elicit a variety of motions, from highly periodic
to completely aperiodic. For example, the “tumbling” sequence
of Beryl Biped depicted in Figure 10 was computed with

�����	�
,

where
�

is the length of time available for the entire motion.
The periodic shuffling in Figure 11 was computed with a value of����
��

.

5 The Animation Editor

The automatic motion-synthesis techniques described here and
elsewhere are currently capable of producing controllers for rela-
tively simple motions only. To produce more complex movement,
Cohen [2] implemented a system that permits a human animator
to design and refine a trajectory by interactively submitting sim-
ple subproblems for solution on-line. This approach may be quite
attractive for 2D articulated figures, especially given the ability to
solve 2D SC problems in times ranging from seconds to minutes
on a modern workstation (� 4.2). However, such speedy turnaround
is not likely for 3D SC problems in the near future [12].

As an alternative to Cohen’s approach, we propose the following
scenario for creating complex, composite motion sequences:

1. The animator defines the animated character by specifying
the physical structure of a 2D articulated figure.

2. The computer generates a suite of different motion controllers
for this character automatically off-line, using the SPHC al-
gorithm (� 3) and various combinations of primary and sec-
ondary fitness terms (� 4.1).

3. The animator develops composite motions by interactively
concatenating selected controllers in time using a graphical
animation editor.

This approach has the advantage that all lengthy computations are
performed off-line in step 2; the animator’s interaction with the edi-
tor in step 3 does not require the solution of additional SC problems.
However, it is not immediately obvious how the concatenation op-
eration in step 3 can be supported: if a motion controller is invoked
for an articulated figure that starts out in a different configuration
than the one for which the controller was constructed, what hap-
pens? Fortunately, we discovered that motion controllers which
use standard SR rules (� 1) have a degree of intrinsic robustness.
If the figure is in a configuration that is reasonably close to some
configuration that occurs somewhere in the normal trajectory (the
one followed by the figure when started from its expected initial
configuration), then it will usually produce a motion similar to the
one it was designed to produce. Thus the animator need not be
intolerably precise in choosing when to switch from one motion
controller to another in order to get a desired composite motion.

An example of a composite motion produced with the help of
our animation editor is shown in Figure 12. Three separate motion

6 Good time-based controllers for these problems can be found in a few tens of
seconds on a DEC 3000/400 AXP workstation. One contributing factor to the ease
with which good time-based controllers can be found may be the smaller number of
parameters per rule.

controllers are concatenated (via a direct-manipulation GUI) to
produce first a left-to-right shuffle (A–C repeated), then a right-to-
left cartwheel (C–J), then an unusual jump (J–M),7 and finally the
shuffle again (M–O repeated).

6 Conclusions and Further Work

In this paper we have described an empirical study of search al-
gorithms for 2D articulated-figure SC problems, mechanisms for
influencing the various search algorithms, and an animation editor
that supports the temporal concatenation of existing motion con-
trollers. We anticipate at least three directions for future research.

First, further exploration of mechanisms for influencing the
search is certainly appropriate. It is clear that such mechanisms
could take many forms. Here is a partial listing of the possibilities:

$ Human as fitness function (“interactive evolution”). No
quantitative objective function is used. Instead, the human
animator scores every motion generated by the computer.
This possibility is analogous to previous approaches to the
evolution of static images [14, 15]. In a variant of this ap-
proach, controllers produced by the usual batch procedure
could be refined by interactive evolution with the goal of in-
troducing desirable nuances or subtlety of movement into a
figure’s trajectory.

$ Direct human control of fitness function. As in the approach
that we have employed here, the human modifies terms in the
fitness function to elicit the desired motions.

$ Indirect human control of fitness function by example. In this
approach, the human animator scores some small fraction
of the generated motions, and the machine tries to infer an
appropriate fitness function to fit the given choices.

$ Human augmentation of search process. In this approach, the
fitness function is fixed, and the role of the human being is to
encourage particular motions via gestural hints [18].

Second, to enhance the practicality of the animation editor, we
are investigating how to bias the search algorithm in favor of mo-
tion controllers that function well from a large number of starting
conditions.

Finally, all of these results need to be verified, and perhaps
adapted somewhat, (a) for physical simulators that are more com-
plex and realistic than the one employed here, and (b) for other
autonomous animated characters, e.g., mass-spring models and 3D
articulated figures [12].

7 Acknowledgments

We thank Stuart Shieber for comments on the manuscript. JTN
is grateful for a Graduate Fellowship from the Fannie and John
Hertz Foundation. This work was supported in part by an NSF
grant to Martin Karplus, and by an equipment grant from Digital
Equipment Corp. The animation-editor project was investigated
on a Hewlett-Packard workstation donated by Walter Hewlett to
Dunster House, Harvard University.

7Mr. Star-Man jumps by rapidly bringing his legs together, which elevates his
center of mass rapidly. Given that we have not limited his thigh strength, this is a
reasonable method of jumping, though it is not particularly anthropomorphic.

References

[1] L. S. Brotman and A. N. Netravali. Motion interpolation by
optimal control. Computer Graphics, 22(4):309–315, August
1988.

[2] M. F. Cohen. Interactive spacetime control for animation.
Computer Graphics, 26(2):293–302, July 1992.

[3] L. Davis. Bit-climbing, representational bias, and test suite
design. In J. D. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 18–
23, San Mateo, CA, 1989. Morgan Kaufmann.

[4] L. Davis. Handbook of Genetic Algorithms. Van Nostrand
Reinhold, New York, NY, 1991.

[5] A. Fukunaga, J. T. Ngo, and J. Marks. Automatic control
of physically realistic animated figures using evolutionary
programming. In Proceedings of the Third Annual Confer-
ence on Evolutionary Programming (EP94), San Diego, CA,
February 1994. To appear.

[6] D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, Reading, Mas-
sachusetts, 1988.

[7] M. Mitchell, J. H. Holland, and S. Forrest. When will a ge-
netic algorithm outperform hill climbing? In J. D. Cowan,
G. Tesauro, and J. Alspector, editors, Advances in Neural In-
formation ProcessingSystems, volume 6. Morgan Kaufmann,
San Mateo, CA, 1993.

[8] J. T. Ngo and J. Marks. Massively parallel genetic algorithm
for physically correct articulated figure locomotion. Working
Notes for the AAAI Spring Symposium on Innovative Appli-
cations of Massive Parallelism, Stanford University, March
1993.

[9] J. T. Ngo and J. Marks. Physically realistic motion synthesis in
animation. Evolutionary Computation, 1(3):235–268, 1993.
In press.

[10] J. T. Ngo and J. Marks. Spacetime constraints revisited. In
SIGGRAPH ’93 Conference Proceedings, pages 343–350.
ACM SIGGRAPH, Anaheim, CA, August 1993.

[11] J. T. Ngo and J. Marks. Spacetime constraints revisited. ACM
SIGGRAPH Video Review, Issue 96: Video Supplement to
the SIGGRAPH ’93 Conference Proceedings, 1993.

[12] H. Partovi, J. Christensen, A. Khosrowshahi, J. Marks, and
J. T. Ngo. Motion synthesis for 3D articulated figures and
mass-spring models. In review, 1994.

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C. The Art of Scientific Com-
puting. Cambridge University Press, Cambridge, UK, second
edition, 1992.

[14] K. Sims. Artificial evolution for computer graphics. Com-
puter Graphics, 25(4):319–328, July 1991.

[15] S. Todd and W. Latham. Evolutionary Art and Computers.
Academic Press, London, 1992.

[16] M. van de Panne and E. Fiume. Sensor-actuator networks.
In SIGGRAPH ’93 Conference Proceedings, pages 335–342,
Anaheim, CA, August 1993. ACM SIGGRAPH.

[17] M. van de Panne and E. Fiume. Sensor-actuator networks.
ACM SIGGRAPH Video Review, Issue 96: Video Supple-
ment to the SIGGRAPH ’93 Conference Proceedings, 1993.

[18] J. Ventrella. Personal communication.

[19] A. Witkin and M. Kass. Spacetime constraints. Computer
Graphics, 22(4):159–168, August 1988.

Step

Time

A B

Gather

Time

B C

Reach

Time

C D

Step

Time

D B’

Figure 8: Mr. Star-Man shuffling. The B–C–D–B’ sequence is repeated cyclically.

Twist

Time

A B

Tip

Time

B C

Roll

Time

C D

Hop

Time

D E

Shift

Time

E F

Fall

Time

F G

Stand

Time

G H

Roll

Time

H I

Figure 9: Mr. Star-Man doing a cartwheel.

A B

Time

Step

B C

Time

Lunge

C D

Time

Fall

D E

Time

Launch

E F

Time

Pivot

F G

Time

Land

G H

Time

Kneel

Figure 10: Beryl Biped tumbles aperiodically.

A B

Time

Reach

B C

Time

Gather

C D

Time

Reach

D C’

Time

Gather

Figure 11: Beryl Biped shuffles periodically. The C–D–C’ sequence is repeated cyclically.

A B

Time

Reach Gather

Time

B C

C D

Time

Scissor Land

Time

D E

E F

Time

Twist

F G

Tip

Time

G H

Time

Flip

H I

Time

Land

I J

Time

Stabilize

J K

Time

Crouch

K L

Time

Jump

L M

Time

Land

M N

Time

Gather

N O

Reach

Time

Figure 12: Mr. Star-Man’s composite trajectory.

