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Abstract We investigate the application of simulation-based genetic programming
to evolve controllers that perform high-level tasks on a service robot. As a case
study, we synthesize a controller for a guide robot that manages the visitor traffic
flow in an exhibition space in order to maximize the enjoyment of the visitors. We
used genetic programming in a low-fidelity simulation to evolve a controller for this
task, which was then transferred to a service robot. An experimental evaluation
of the evolved controller in both simulation and on the actual service robot shows
that it performs well compared to hand-coded heuristics, and performs comparably
to a human operator.

1 Introduction

Evolutionary robotics (ER) is a class of approaches that use genetic and evolu-
tionary computation methods in order to automatically synthesize controllers for
autonomous robots. Early work started with evolution and testing of controllers
in simulation [1,17,9]. This was followed by the introduction of embodied evolution,
where the evolution was performed on real robots [25,21], as well as controllers
which were evolved in simulation and transferred to real robots [25]. Nelson, Bar-
low, and Doitsidis present a recent, comprehensive review of previous work in
evolutionary robotics [24].

Previous work on ER involvingmobile robots has focused on relatively low-level
tasks, such as locomotion/gait generation, navigation (including object avoidance),
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box-pushing, wall-following, and searching/foraging tasks. By “low-level”, we are
not referring to the difficulty of solving the task with a robot, but rather to the
fact that the tasks tend to be essential for the “survival” of an autonomous robot
(e.g., obstacle avoidance, wall-following), or tasks that an animal-level intelligence
can perform (e.g., object following, box-pushing). Furthermore, previously work
in ER tended to generate “low-level” controllers that mapped sensor inputs to
motor outputs (motor output levels or low-level commands such as “forward”,
“turn left”).

Although there have been some experiments with large, service robots, such as
the evolution of navigation and obstacle avoidance behaviors [7,4], and shepherd-
ing of a robot using another Nomad robot [31], previous ER research involving
mobile robots has usually been performed using relatively small, research robots
(robots which are primarily built for research purposes, as opposed for commercial
deployment), as exemplified by the Khepera platform. A notable exception is the
evolution of gaits and ball-chasing behavior for a commercial quadruped [10,11].

In this work, we investigate the use of genetic programming to solve high-level
tasks on a commercial, human-sized service robot. This differs significantly from
traditional ER research due to the nature of the robot platform. Compared to
most of the robot platforms that have been used in traditional ER research such
as the Khepera, service robot platforms are have more powerful onboard sensing
and processing capabilities, as well as wireless networking, enabling them to access
remote resources. Such platforms have become relatively mature in recent years,
and basic capabilities such as navigation and collision avoidance are provided as
reliable, robust, software libraries. For example, the Fujitsu enon service robot
platform we used provides vision-based localization and navigation, integrated
with collision avoidance. When used in their intended environments, traditional
ER benchmark tasks such as navigation and object avoidance are of little interest
for this kind of platform because high-quality implementations based on decades
of mobile robot research are already provided with the platform. Furthermore,
due to safety concerns and perceptions of risk, there are significant obstacles to
deploying evolved, low-level behaviors for critical tasks such as collision avoidance
or navigation on commercial service robots. On the other hand, as long as robust,
low-level behaviors guarantee safety, there is substantially less risk involved with
considering the deployment of evolved, high-level behaviors.

Therefore, this class of platform provides the opportunity to consider ER for
higher level tasks, such as high-level task planning and interaction with humans.
Instead of studying low-level tasks that map raw sensor inputs to motor outputs,
we focus on higher-level applications which map symbolic information gathered
by the system to high level commands executed by lower-level software, such as
“move to location L while avoiding obstacles”. These are higher level primitives
than the commands output by evolved controllers in previous work with service
robots [4,31].

For high-level tasks where a single fitness function evaluation requires a very
long time (e.g., tens of minutes or longer), executing the evolutionary process on
the real robot tends to be impractical, and the evolutionary learning must take
place in simulation. However, an issue with evolving controllers in simulation is
that the controllers might not perform well when transferred to the real robot. It
might be possible to overcome this problem by investing significant effort in build-
ing an accurate simulator which closely reflects the real world, but in a practical
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setting, this brings up the question of time and cost-effectiveness: the effort of
building a high-fidelity simulation for the ER task can end up being significantly
more time-consuming than carefully programming the robot by hand to achieve
the desired performance.

We investigate the use of a GP approach where a very low-fidelity simulation
with many trials per controller (using an “envelope of noise” approach [14]) is used
to evolve a robust controller for a high-level task which maps a symbolic description
of the state of the system/environment to high-level actions (commands to a lower-
level navigational system).

As an application case study, we consider the problem of visitor traffic flow
management in an exhibition space such as a museum using a service robot. In
order to maximize the enjoyment of visitors at an exhibition space with multimedia
exhibits, a robot guide can rove the exhibition space, suggesting to visitors which
exhibit they should go to next. In addition, because the robot guide is itself an
interesting novelty, the robot should try to maximize interactions with visitors.
We model this problem as a planning problem where the controller constantly
decides where to go next in order to interact with visitors, and outputs a high-
level goal (exhibit) which is given to the lower level, navigation software. We show
that genetic programming using a very crude simulation is sufficient to generate a
controller for this task which significantly outperforms hand-designed heuristics.
This controller is transferred to a service robot and demonstrated to perform well
in the real world compared to the hand-coded heuristics, as well as a human
operator.

The rest of the paper is organized as follows. First, we review previous work
on applying GP to evolutionary robotics (Section 2). In Section 3, we describe
the exhibition space visitor traffic management problem, which is the motivation
for this work. Section 4 describes the application of GP to generate a controller
for a guide robot which addresses this task, and presents experimental results in
simulation, as well as the results when the evolved controller is transferred to
an actual service robot. In Section 5, we consider whether the ER approach is
practical for our problem, compared to a standard software development process.
Finally, Section 6 discusses our results and directions for future work.

2 Previous Work on GP for Robot Control

The first application of GP to evolutionary robotics was the evolution of wall-
following and box-pushing behaviors in simulation by Koza [18]. An early survey
of evolutionary robotics by Mataric and Cliff pointed out the lack of realistic noise
model in Koza’s simulation and questioned whether this approach would actually
work on a real robot [20]. In simulation, Ito, Iba, and Kimura investigated the
robustness of GP controllers for box pushing behavior and showed that evolved
controllers were quite robust with respect to initial conditions and noise in sensing
and actuation [13].

Lee, Hallam, and Lund showed the feasibility of using GP to evolve a controller
for box-pushing in simulation, and then successfully transferring the evolved con-
troller to a real Khepera [19]. Ebner and Zell successfully replicated Koza’s wall-
following experiment both in simulation and on a real service robot (RWI B21)
[4].
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Nordin and Banzhaf were the first to perform embodied evolution using GP,
and evolved obstacle avoidance and object tracking (following) behaviors on a
Khepera [26] by mapping sensor input to motor output values. They improved
upon this by mapping sensor inputs to expected utility (“learning a world model”)
and demonstrated this approach on obstacle avoidance and wall-following behav-
iors on the Khepera [27]. Sharabi and Sipper used GP to evolved Sumo robots on
small, custom-built, real robots [32].

While most of the work applying GP to robot control has been on wheeled
robots (simulated and real), Wolff and Nordin used Linear Genetic Programming
to generate locomotion on a simulated humanoid robot [38], and Tanev applied
GP to evolve locomotion a simulated snake robot [36]. Kamio and Iba proposed a
method for evolving box-moving behavior in simulation for a “generic” robot. This
generic behavior was then transferred to real robots (an Aibo quadruped as well
as a HOAP-1 humanoid robot) and adapted to the characteristics of the specific
robots using reinforcement learning [15].

Evolving robot controllers in simulation has become a common benchmark
in research which proposes new GP techniques. For example, Pilat and Oppacher
performed a comparative study of hierarchical GP methods for wall-following, light
avoidance, and obstacle avoidance on a Khepera simulator [30]. .

In a different approach to high-level robot control, GP has been used in sim-
ulation to generate robot plans in a classical AI planning framework. Handley’s
work generated sequences of mid-level, discrete actions in a 2D grid world (“turn
left 90°”, “turn right 90°”, “move forward one square”, “toggle lightswitch”) [8].
Spector [35], as well as Muslea [23] used GP in a classical AI planning framework
to solve planning problems where possible actions can be arbitrary operators such
as pick-up-block and open-door. While this line of work uses GP to generate se-
quences of actions that achieve a goal in a simulated, deterministic setting, we
generate a policy/controller which selects actions to maximize fitness in a noisy
setting for a real robot.

3 Directing Visitor Flow in an Exhibition Space Using a Guide Robot

Robot tour guides for exhibit spaces such as museums are a popular applica-
tion of mobile robots. The earliest robot tour guide was Polly, which led visitors
around the MIT robot lab [12]. Rhino, which gave interactive tours to visitors of
the Deutsches Museum in Bonn started its tours at a predetermined start loca-
tion, led visitors through the exhibits and played a recorded presentation at each
exhibit, and returned to the start location, where it waited for new visitors [3].
Minerva, deployed at the Smithsonian Museum of American History, had a high-
level tour planner designed to give tours which were approximately 6 minutes long
(researchers determined that this was the amount of time that visitors would like
to follow the robot). Since the rate of progress of a tour varies depending on the
circumstances, Minerva dynamically re-planned the remainder of the tour at each
exhibit in order to achieve the target 6-minute duration [37]. Ten Robox guides
were deployed at the Swiss Expo.02 [34]. An average of 125 visitors were present
in the exhibit at any given time, making management of visitor flow an important
issue. To channel the visitor flow smoothly, the tours were constrained so that the
tour led visitors closer to the exit, and centralized coordination was used in order
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to assign exhibits to robots in order to prevent multiple robots from simultaneously
presenting the same exhibit.

Other robot guides include Sage [29], which gave tours at the Carnegie Museum
of Natural History, the the Robovie guide robot, which was deployed at the Osaka
Science Museum [33], and a robot guide deployed in a Japanese shopping mall
[16].

Previous robot guide research has focused on giving tours to a single group of
visitors at a time. However, this means that in a popular museum or exhibition, we
must deploy many robots (as in [34]), or the number of visitors who can interact
with the robot will be limited. As an alternative, we can have a semi-guided
tour where the robot directs the visitors to an interactive exhibit. This frees the
robot guide to go and give directions to another group of visitors. Decoupling
exhibit presentation from the task of guiding visitors between exhibits allows a
single robot to simultaneously attend to multiple groups of visitors. While there
has been previous work on various aspects of robot-human interaction involving a
single robot and multiple humans [2],we focus on high-level goal selection for this
setting.

Previous, large-scale, long-term deployments have demonstrated that robot
guides can successfully entertain and educate visitors with minimal human su-
pervision over extended periods of time [3,37,29,34]. Basic capabilities such as
localization, collision avoidance, and navigation have matured to the point that
today, commercial “service robots” have become available (e.g., the Fujitsu Fron-
tech enon [5]). It is now possible to work on high-level, algorithmic issues related
to guide robots, such as the operational effectiveness of robot guides in achieving
the overall goals of the museum or exhibit space where the robot is deployed.

One aspect of museum/exhibition operations which could be optimized by the
use of a robot is the flow of visitor traffic through the exhibits. For example, a
museum exhibition consists of a set of exhibits. If all of the visitors simultaneously
flock to a particularly popular exhibit, it would cause congestion and overall dissat-
isfaction with the museum visit. Of course, the visitors will tend to autonomously
adjust their course so that extreme cases (such as everybody simultaneously going
to the same exhibit) are avoided. The question we wish to address is: Is it possible
to use a robot guide to help direct traffic among the exhibits so that the visit
experience is improved?

Fig. 1 Fujitsu enon robot guide directing visitors at a poster exhibit
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3.1 A Model for the Robot Guide Problem

Fig. 2 A robot directs groups of visitors through a museum with 4 exhibits

We are developing a robot-guided tour environment which can be used in a
museum, conference, or similar exhibition space. A single mobile robot guide is
used to direct many groups of visitors simultaneously. Our model consists of a set
of exhibits, visitors, and the guide robot (Fig. 2):
Exhibits: There is a set of k exhibits. At each exhibit, there is a pre-recorded
presentation/demo with durations d1, ..., dk. Each exhibit can be in one of 2 states,
idle or presenting, and initially starts in the idle state.

Presentations are started upon a visitor’s request, and can not be interrupted.
Additional requests to start a presentation while an exhibit is already presenting

have no effect.
Visitors: A stream of visitors arrives at some initial location. When a visitor
arrives at an exhibit i, there are 3 possibilities:

1. The exhibit is currently idle (not giving a presentation). In this case, the
visitor requests a presentation. The exhibit state changes to presenting, and
the visitor state changes to listening.

2. There is an ongoing presentation (exhibit state = presenting), and the time
remaining until the end of the presentation is less than di/2 (the visitor has
missed over half of the presentation). In this case, the visitor will listen to the
remainder of the presentation, and then, at the end of the current presentation,
will restart the presentation and stay until this second cycle of the presentation
is completed.

3. There is an ongoing presentation (exhibit state = presenting), and the time
remaining until the end of the presentation is greater than or equal to di/2
(i.e., the visitor can listen to the majority of the presentation). In this case,
the visitor will remain at the exhibit until the end of the current presentation,
and then leave for another exhibit.

When a visitor leaves a location (an exhibit or the entrance of the exhibit
space), the next destination is decided as follows: If v has visited all exhibits, he
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exits the exhibition. If the robot guide suggests a destination, v will follow the
suggestion and select the suggested destination with probability ps (we refer to ps
as the visitor compliance parameter). Otherwise, v selects a destination according
to a selection heuristic. If v has not received any suggestions from the robot, v will
select a target according to a selection heuristic. The default selection heuristic
is to select the least crowded exhibit which v has not yet visited (ties are broken
randomly).

Guide Robot: There is a single, robot guide which moves freely in the exhibition
area. Given a target location, the robot can plan a path to the goal and move
towards the goal while avoiding any obstacles.

The robot is in one of 4 states:

– idle: This is the initial state for the robot.
– moving: Moving towards an exhibit (once a robot begins to move toward an

exhibit, it will not change its destination midstream).
– waiting: The robot is at an exhibit where a presentation is being given; when

the presentation ends, the robot state will change to directing, and it will
begin to give directions to the visitors at the exhibit

– directing: The robot is giving directions to visitors at an exhibit.

If the robot arrives at an exhibit where there are visitors listening to a presen-
tation, the robot waits until the presentation is complete, and then suggest to each
of the visitors which exhibit to go to next. The process by which the robot makes
the suggestion are described in Section 4. The visitors may ignore the robot’s di-
rections with probability (1 − ps) and decide their own destination, as described
above.

3.2 An objective function for the robot guide

Our goal is to make the exhibition visit more enjoyable for the visitor, so we
would like a quantifiable metric correlated with enjoyment. Although it is difficult
to quantify “enjoyment”, we can identify two factors related to enjoyment which
can be influenced by our robot guide system.

First, visitor tours should be managed such that the amount of redundancy
in the presentations heard is minimized. In a crowded space where exhibits have
prerecorded presentations, it is desirable for visitors to synchronize their tour such
that they avoid spending time listening to partial presentations. Ideally, the guest
arrives at each exhibit exactly when a new presentation begins.

Second, we assume that interaction with the robot enhances enjoyment of the
visit. Although lengthy interactions with robot guides is not necessarily enjoyable
or sustainable, particularly compared to a human tour guide (c.f., [29]), mobile
robots are still novel enough that we would like visitors to have some interaction
with the robot during their visit.

Taking these considerations into account, the robot guide is defined as the
problem of programming a robot guide which seeks to: (1) Schedule visitor arrivals
at exhibits so that they arrive when the presentation has not yet started, or as
close as possible to the start of the presentation; and (2) Maximize the number of
visitors who interact with the robot.
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More precisely, the objective is to minimize f =
∑

v
(wpP (v) + wII(v)), a

weighted sum of 2 components: (1) the exhibit arrival component,

P (v) =
∑

e

(
−4(t− Ti/2)

2

T 2

i

+ 1)

which is minimized (P (v) = 0) when t, the arrival time of the visitor at exhibit i

coincides with the start of a presentation, and is maximal (worst) when the visitor
arrives exactly halfway through the duration Ti of the presentation; (2) the robot
interaction component, I(v), where I(v) = 0 if visitor v had at least 1 interaction
with the robot guide, and 1 otherwise. In the experiments below, wP = 5 and
wI = 1.

3.3 Controllers for the Robot Guide

The guide robot’s behavior consists of moving to an exhibit where either a pre-
sentation is currently ongoing (or is expected to start when a visitor arrives), and
when the presentation ends, suggesting to each visitor who has just finished lis-
tening to the presentation which exhibit to visit next. This can be decomposed
into two decision problems: First, the robot must decide which exhibit to move to.
Second, the robot must decide which exhibit to suggest to each idle visitor.

The second problem (selecting the exhibit to suggest to each visitor) is handled
in a greedy manner using one-step lookahead as follows: The robot is aware of the
current state of every exhibit. For each exhibit e, based on the current state of
e and the estimates of visitor speed, we can estimate what state e will be in if
the visitor moves to e from his current location. For each idle visitor, the robot
suggests the exhibit which will minimize the presentation penalty P (v).

In this paper we focus on the first problem, which is the problem of deciding
which exhibit the robot moves to. This is difficult because the visitors behave au-
tonomously and their actions are not entirely predictable. As described in Section
3, if the robot is not present when a visitor finishes listening to a presentation, the
visitor chooses his destination autonomously; furthermore, even if the robot makes
a suggestion, the visitor may ignore the suggestion and choose his own destination.

Several, obvious baseline strategies can be implemented for this problem:

– Stationary - Remain stationary at Exhibit #1. Since all visitors will eventually
visit this exhibit, this will maximize the number of visitors who interact with
the robot;

– Random - move toward a randomly selected exhibit;
– Busiest-exhibit: move toward the exhibit which currently has the largest num-

ber of visitors who are listening to the exhibit demo;
– Most-fresh-visitors - move towards the exhibit which currently has the largest

number of visitors who have not yet interacted with the robot.

3.4 Prototype Robot Environment

We implemented a physical prototype of the robot guide system described above
using a Fujitsu Frontech enon service robot [5] (Figure 3. The enon robot is a
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wheeled mobile robot with a humanoid torso and head, and has an onboard x86
PC with wireless communications. Standard capabilities of the enon (provided in
the systems software) include obstacle detection and visually guided navigation.

All of the exhibits (consisting of a poster and a PC which is used to both
give a multimedia presentation and track visitor locations) as well as the robot
are networked, so all information needed by the robot controller would be readily
available. Visitor location and history are tracked by having visitors register their
arrival at each exhibit. In a real-world deployment, the system could track the
location and visit history of each visitor by having visitors carry an RFID tag,
and placing RFID readers/sensors at each exhibit.

The software architecture of our robot guide system is shown in Figure 3, and
consists of the following, distributed components:

– Presenter (one instance at each exhibit): A process running at a notebook
PC located at every exhibit. When a visitor arrives at an exhibit, he registers
himself at the exhibit Presenter. Registration can be done by entering his
unique visitor ID number, or an RFID tag-based tracking of visitors. Each
Presenter sends this registration information, as well as the state of the exhibit,
to the Commander, allowing the system to perceive the visitors’ locations, as
well as keep track of each visitor’s history. The Presenter plays a prerecorded,
audio presentation which explains the exhibit.

– Enon-Server: This process runs on the enon robot. It sends robot state in-
formation to the Commander, and receives destination commands from the
Commander. The destination is given to the onboard navigation system, and
the robot moves to its destination while avoiding obstacles.

– Commander: This is the central, decision-making component (running on the
robot) which receives Presenter state and visitor registration data from all of
the Presenters, as well as state information from the enon, and based on this
information, decides upon the next action (which exhibit to move the robot
to). The decision function can either be hand-coded, or evolved using a GP.

This prototype system has been implemented and tested in a physical envi-
ronment. The enon robot guide guides student “visitors” in an environment with
4 poster exhibits. A notebook PC running a Presenter is located at each of the
4 exhibits. The current Commander uses a controller evolved in simulation. Our
current research is focusing on evolving successful controllers for this physical plat-
form, using techniques such as on-line adaptation of controllers which are initially
evolved in simulation, then improved with on-board learning.

Unfortunately, experiments using the actual robot are time consuming – each
experiment requires at least 30 minutes, and some time is required between each
run to reset/initialize the robot and environment. Furthermore, the number of
consecutive experiments that can be performed is limited because the robot must
be recharged after several hours of operation. Under these adverse conditions, an
experimental evaluation involving actual human “guests” moving around the ex-
hibit hall and interacting with the robot was not feasible due to time and resource
limitations. Instead, we used “virtual guests”, which are simulated guests who
behaved like the guests in the simulated environment (Section 4.1). Thus, in the
robot experiments, the enon robot moves around in the actual physical exhibit
environment using vision-guided navigation (which means that there is significant
noise in the system); however, instead of interacting with real human guests who



10 Alex Fukunaga et al.

Fig. 3 Visitor Traffic Flow Management System Architecture

are tracked using RFID tags, the robot (and exhibits) “interact” with simulated,
virtual humans.

This hybrid physical-virtual experimental setup approximates the intended
real-world robot guide scenario and allows us to perform repeated experiments to
evaluate the behavior of candidate guide controllers in the physical world.

4 Generating Robot Guide Controllers Using Genetic Programming

We use strongly-typed genetic programming [22], a variant of genetic programming
(GP)[18], to automatically search for controller programs expressed in a domain-
specific language for the robot guide domain. In strongly-typed GP, every slot has
an associated type, and only functions or terminals which satisfy the type constraint
can be used to fill the slot. The root node of every individual returns an object of
type exhibit – in other words, all individuals generated by the GP system return
a valid exhibit object. The functions in the domain-specific language defining the
space of controllers searched by the GP system are described in Table 1.

In addition to these functions, the terminals used by the GP system include
standard numbers, comparator symbols (<,>,≤,≥,=, 6=), symbols representing
each of the 4 exhibits (+E1+, +E2+, +E3+, +E4+). There are also 3 terminals of
type “criterion” which are the criteria used by the functions IF-EXHIBIT-COND,
IF-EXHIBIT-COND-RATIO, and IF-EXHIBIT-COND-DIFF to compare relevant properties
of exhibits. These 3 terminals are NUM-VISITORS, NUM-UNTOUCHED-VISITORS, and
DISTANCE-TO-ROBOT, which consider the number of visitors currently at an exhibit,
the number of visitors at an exhibit who have not yet interacted with the robot,
and the distance from an exhibit to the robot, respectively. For example, we can
use this language to implement the Busiest-exhibit heuristic as:

(BUSIER-EXHIBIT

(BUSIER-EXHIBIT +E1+ +E2+)

(BUSIER-EXHIBIT +E3+ +E4+))

Similarly, the Most-fresh-visitors heuristic can be implemented in our language
as:
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Functions

name arguments (types) description
IF-RAND-LT p (float)

e1, e2 (exhibit)
Let r be a randomly generated floating
point number. If r ≤ p, then return e1,
else return e2

IF-EXHIBIT-COND comp (comparator)
cri (criterion)
n (cond-int)
e1, e2 (exhibit)

Compute c1 = criterion(e1, cri) and
comp(c1, n), where comp(c1, n) is the
comparator comp applied to c1 and n.
Return e1 if comp(c1, n) is true; other-
wise return e2. E.g., (IF-EXHIBIT-COND
= 0 +num-visitors+ e1 e2) returns e1
if the number of visitors at exhibit e1 is
0, and otherwise returns e2.

IF-EXHIBIT-COND-RATIO comp (comparator)
cri (criterion)
ratio (double)
e1, e2 (exhibit)

Compute c2 = criterion(e2, cri). If
c2 = 0 (special case to avoid divi-
sion by 0), then return criterion(e1, cri).
Next, compute c1 = criterion(e1, cri).
Let r = c1/c2. If comp(r, ratio)
is true, then return e1, else re-
turn e2, where comp(r, ratio) is the
comparator comp applied to r and
ratio. E.g., (IF-EXHIBIT-COND-RATIO >=

0.5 NUM-VISITORS e1 e2) returns e1 if
the ratio of the number of visitors at e1
and e2 is greater than or equal to 0.5 (or
if e2 = 0), and otherwiese returns e2.

IF-EXHIBIT-COND-DIFF comp (comparator)
cri (criterion)
ratio (cond-int)
e1, e2 (exhibit)

(Similar to IF-EXHIBIT-COND-RATIO):
Compute c2 = criterion(e2, cri) and
c1 = criterion(e1, cri). Let d = c1 − c2.
If comp(d, ratio) is true, then return e1,
else return e2.

MOST-UNTOUCHED-EXHIBIT e1, e2 (exhibit) Compute u1 and u2, the number of visi-
tors who are at e1 and e2, respectively, who
have not yet interacted with the robot. Re-
turns e1 if u1 ≥ u2, and returns u2 other-
wise.

CLOSER-EXHIBIT e1, e2 (exhibit) Returns e1 if e1 is closer to the robot than
e2; otherwise returns e2.

FURTHER-EXHIBIT e1, e2 (exhibit) Returns e1 if e1 is further from the robot
than e2; otherwise returns e2.

BUSIER-EXHIBIT e1, e2 (exhibit) Returns e1 if there are more visitors at e1
than e2; otherwise returns e2.

EARLIER-END-EXHIBIT e1, e2 (exhibit) Let endi be the time remaining until the
end of the current demonstration being
played at exhibit i ( ti = 0 if exhibit i is
currently not giving a demo). Return e1 if
end1 < end2; otherwise returns e2.

Table 1 Functions in our domain specific language for Robot Controller Specification

(MOST-UNTOUCHED-EXHIBIT

(MOST-UNTOUCHED-EXHIBIT +E1+ +E2+)

(MOST-UNTOUCHED-EXHIBIT +E3+ +E4+))

The GP is a steady-state algorithm, where at every iteration, 2 individuals
are selected using tournament selection and mated. The mating uses crossover
and mutation to generates 2 children, which are then inserted into the population
using a reverse tournament selection where the worst members in the tournament
are replaced.

Since our fitness function requires a long experiment to evaluate, embodied
evolution of the controller using the real robot (which would require hundreds
or thousands of experiments) would be prohibitively expensive, so we rely on
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simulation-based evolution to synthesize a controller which can be transferred to
the robot.

We did not have access to a simulation environment for our Fujitsu enon robot,
so we had to implement our own simulator. Thus, we implemented an extremely
simple, low-fidelity simulator which only models what we believed to be essential
features of the problem. The robot, as well as the visitors, are treated as point
masses, so collision avoidance is not modeled directly. 1

Instead of attempting to implement a high-fidelity simulation which accurately
models the inherent sources of noise in the system (obstacle avoidance, vision,
navigation, etc), we apply the approach of Jakobi [14], and apply an “envelope
of noise” (described below in Section 4.1) in the evaluation function in order to
use this low-fidelity simulator to generate a controller that can perform well when
transferred to the real robot. Rather than trying to evolve a controller that per-
forms very well for one particular, simulated environment (where the simulation
may differ significantly from reality), we evolve a controller to perform well on
a wide range of simulated environments – it is hoped that an evolved controller
which performs robustly across a wide range of environments will perform rela-
tively well (i.e., better than hand-crafted controllers) when transferred to the real
robot.

4.1 Simulation Results

We used the GP system described above to evolve a controller for a robot guide.
As shown in Figure 2, the simulated exhibit space has 4 exhibits, located at the 4
corners of a room. The GP population size is 1000, and the GP system is executed
until 20,000 candidates are generated and evaluated. The crossover probability was
0.6, and mutation was applied to both children if and only if crossover was not
applied. Tournament selection was used (tournament size 20), and the max depth
of the trees generated during the run is 6. Trees deeper than this limit are pruned
to the depth limit by replacing subtrees which exceed the limit with a terminal
with a matching type.

We evaluate the fitness of a candidate individual (controller) as follows: We
generate 300 random environments, with three randomized parameters:

– The robot’s speed is set to a value in the range (0.1v,0.3v), where v is the
speed of the visitor (a constant value approximating actual human speed in a
room with the same dimensions as the simulated room);

– The arrival rate r is selected randomly from (0.01,0.05) – this rate is used as
the arrival rate in a Poisson process, so the Poisson arrival rate is set to r/step;

– The visitor compliance rate is set in (0.5,1.0).

The controller is evaluated once in each environment using a 1800 time step
simulation (where each time step is equivalent to a second in the real world). Its
fitness score is the sum of the scores on the 300 individual simulations. Thus,
each controller is evaluated in a large variety of randomized test cases – since our

1 The entire simulation system, including some unit test code, as well as a simple GUI for
displaying simulation runs and setting some control parameters, is only 770 lines of Common
Lisp code, and required approximately 25 hours to implement, so this is clearly not an elaborate
simulator.
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GP Run 1
Rank (out of 8 controllers)

1 (best) 2 3 4 5 6 7 8 (worst)
Evolved-best1 83.7 1.6 1.9 2.4 3.5 6.9 0.0 0.0
Initial-pop-best1 4.5 69.8 19.5 6.0 0.1 0.1 0.0 0.0
Initial-pop-median1 3.0 6.2 1.3 1.6 26.7 61.2 0.0 0.0
Initial-pop-worst1 0.0 0.0 0.0 0.0 0.0 0.0 20.5 79.5
Busiest-exhibit 0.5 9.1 41.4 39.0 5.8 4.2 0.0 0.0
Most-fresh-visitors 1.4 9.5 34.6 50.2 2.9 1.4 0.0 0.0
Stationary 6.9 3.7 1.3 0.9 60.9 26.3 0.0 0.0
Random 0.0 0.0 0.0 0.0 0.0 0.0 79.4 20.6

Table 2 Simulation-based evaluation of hand-coded and evolved controllers: Performance
(rank) on 10,000 test cases (1,000 different randomized environments, 10 runs per environ-
ment). The fraction (%) of test cases where the controller was ranked n-th (out of the 8
controllers) is shown, e.g., the Evolved-best1 controller was ranked 1st on 83.7% of the test
cases.

simulation is extremely low fidelity, it is hoped that by searching for a controller
which performs well across the entire spectrum of environments, we will obtain a
controller that performs well when transferred to the real robot.

The GP was parallelized for multi-core architectures using a standard thread
pool pattern so that one simulation run is executed on each thread, and linear
scaling was observed up to 4 cores. The current implementation of the simulator-
based GP requires 5-6 hours to execute on a 2.93GHz Core i7 workstation for a
single run with 10,000 matings.

We evaluate the following controllers generated by a single, representative run
of the GP system:

– Evolved-best1 - the best individual (controller) found during the GP run (Fig-
ure 4);

– Initial-pop-best1 - The best individual from the initial population in the GP
run;

– Initial-pop-median1 - The median individual in the initial population of the
GP run;

– Initial-pop-worst1 - The worst individual in the initial population of the GP
run.

We compare these automatically generated controllers to the baseline Busiest-exhibit,
Most-fresh-visitors, Stationary, and Random controllers described in Section 3.3.

We compared the controllers as follows. A set of 1000 environments was gen-
erated (using the same randomized process used to generate test cases for the GP
test function in Section 4). For each of these 1000 environments, we generated
10 test cases, ci,1, ..., ci,10, where each test case consists of the environment Ei

(1 ≤ i ≤ 1000), and a set of randomly generated visitor arrival times (based on the
Poisson arrival rate, which is one of the environment parameters). On each of the
10,000 test cases, we executed each candidate controller once using a 5000 time
step run, and evaluated its fitness function score on the test case, and ranked the
controller’s score compared to the score of the other controllers on the same test
case.

Table 2 shows the frequency that each controller was ranked 1st (best), ...,
8th (worst) in each of these 10,000 comparisons. For example, the Evolved-best1
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Fig. 4 The “Evolved-best1” robot controller generated by genetic programming

controller ranked 1st in 83.7% of the 10,000 trials, 2nd in 1.6% of the trials, and
6th in 6.9% of the trials, and never ranked 7th or 8th. These results show that:

– The best evolved controller significantly outperforms all other controllers, in-
cluding the baseline controllers.

– The best randomly generated controller in the initial GP population (Initial-
pop-best) performs significantly better than all of the baseline controllers.

– The simple, busiest-exhibit heuristic, which is arguably one of the most obvious
heuristics for this problem, performs worse than the best of 1000 randomly
generated controllers (i.e., the best member of the initial population).

The best evolved controller found by this particular GP run is shown in Figure
4. The behavior of a robot controller is quite complex, depending on both the
code itself and the environment in which the code is executed. Our domain-specific
language for robot controllers was carefully designed and constrained so that the
GP system would generate controllers in our domain. Thus, the result that the
best individual from the GP initial population performed significantly better than
the busiest-exhibit and most-fresh-visitors heuristics indicates that this design was
successful. This also indicates that in this domain, human intuitions on controller
design can lead us astray. Thus, our data indicates that designing a successful
controller for our robot guide problem is a difficult task which can be facilitated
by automated design methods such as GP.
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4.1.1 Robustness of the GP system

As mentioned above, the results in Table 2 were generated using the default set-
tings for our GP library. In order test whether the success was dependent on that
particular set of GP control parameters, we evaluated the performance of the GP
system using a variety of control parameter settings.

We performed 5 additional runs of the GP (GP Runs 2-6). Each GP run
used a different, randomly generated set of control parameter settings, where the
population size was chosen from [100,2000], the crossover rate was chosen from
[0,1.0], and the tournament size was chosen from [5,40]. For each of these 5 runs,
the set of parameters is shown in Table 3. The best controller generated by each
GP run, as well as the best, median, and worst members of the initial population,
and a the set of hand-coded heuristics (Busiest-exhibit, Most-fresh-visitors,
Random, Stationary) using 10,000 test cases. Table 3 shows the frequency that each
controller was ranked 1st (best), ..., 8th (worst) out of these 10,000 comparisons.

From the results in Table 3, it is clear that the results are qualitatively similar
to the results of Table 2. The best evolved controller on each run is consistently the
best performer, showing that the ability of the GP system to reliably evolve con-
trollers which are better than hand-crafted controllers does not depend critically
on a particular set of control parameter values.

These robust results suggest that perhaps GP is not necessary – given our
domain-specific language for describing guide robot controllers (Table 1), perhaps
random generation of expressions in this language is sufficient. We tested this
hypothesis by evaluating Random-Generate-and-Test (RGT), a trivial algorithm
which simply generates n expressions of up to depth 6 using the same random
s-expression generator used by the GP code, evaluates them using the same fit-
ness function used by the GP, and returns the best s-expression found from the n

samples. We ran RGT 5 times, where each run of RGT, the number of individuals
generated and evaluated was n = 20,000, and the best fitness scores found in the
5 runs were BestRGT = {481.42,476.27,479.34,483.77,478.52}. In comparison, the
fitness scores of the best individuals found by the 5 GP runs using randomized con-
trol parameters in Table 3 were BestGP = {467.71,463.57,462.74,470.84,466.20}.
We comparedBestRGT and BestGP using a non-parametric, Mann-Whitney U-test
and verified that there was a statistically significant difference (p = 0.0079). This
indicates that a directed search using GP (even with randomized control parame-
ters) performs significantly better than baseline, randomized generate-and-test.

4.1.2 Robustness of the evolved controller in various simulated environments

Although the previous data shows that evolved controller outperformed the other
controllers overall across a range of test cases, it is possible that there are some
specific classes of test cases in where the evolved controller does not perform well.
To test whether this is the case, we evaluate the controllers on specific subclasses
of test cases, perturbing a single parameter.

First, we consider the effect of perturbing visitor compliance. In the training
cases used during GP-based evolution, compliance was set in the range (0.5,1.0),
that is, visitors follow directions given by the guide robot at least 1/2 of the time.
We evaluated the evolved and hand-coded controllers by executing simulations
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Rank (out of 8 controllers)
1 (best) 2 3 4 5 6 7 8 (worst)

GP Run 2 (population=1274, crossover rate=0.1, tournament size=27)
Evolved-best2 86.3 11.7 1.7 0.3 0.0 0.0 0.0 0.0
Initial-pop-best2 11.5 64.1 18.1 5.8 0.5 0.0 0.0 0.0
Initial-pop-median2 0.0 0.6 3.3 12.5 73.8 9.8 0.0 0.0
Initial-pop-worst2 0.0 0.0 0.0 0.0 0.0 0.0 34.0 66.0
Busiest-exhibit 0.7 9.1 33.6 46.7 9.7 0.2 0.0 0.0
Most-fresh-visitors 1.5 14.4 43.2 34.5 6.1 0.3 0.0 0.0
Stationary 0.0 0.0 0.1 0.3 9.8 89.8 0.0 0.0
Random 0.0 0.0 0.0 0.0 0.0 0.0 65.9 34.1
GP Run 3 (population=1604, crossover rate=0.9, tournament size=11)
Evolved-best3 71.2 26.6 2.2 0.0 0.0 0.0 0.0 0.0
Initial-pop-best3 27.3 63.7 7.7 1.3 0.0 0.0 0.0 0.0
Initial-pop-median3 0.0 0.0 0.0 0.3 47.2 52.5 0.0 0.0
Initial-pop-worst3 0.0 0.0 0.0 0.0 0.0 0.0 30.3 69.7
Busiest-exhibit 0.4 3.1 36.3 59.5 0.7 0.0 0.0 0.0
Most-fresh-visitors 1.0 6.7 53.6 38.5 0.2 0.0 0.0 0.0
Stationary 0.0 0.0 0.0 0.6 51.9 47.5 0.0 0.0
Random 0.0 0.0 0.0 0.0 0.0 0.0 69.7 30.3
GP Run 4 (population=1804, crossover rate=0.83, tournament size=30)
Evolved-best4 87.2 12.2 0.5 0.1 0.0 0.0 0.0 0.0
Initial-pop-best4 12.4 72.6 12.2 2.7 0.1 0.0 0.0 0.0
Initial-pop-median4 0.0 0.0 0.0 0.2 41.3 58.5 0.0 0.0
Initial-pop-worst4 0.0 0.0 0.0 0.0 0.0 0.0 33.2 66.8
Busiest-exhibit 0.2 6.6 36.9 55.8 0.5 0.0 0.0 0.0
Most-fresh-visitors 0.2 8.6 50.2 40.6 0.4 0.0 0.0 0.0
Stationary 0.0 0.0 0.2 0.6 57.7 41.5 0.0 0.0
Random 0.0 0.0 0.0 0.0 0.0 0.0 66.8 33.2
GP Run 5 (population=560, crossover rate=0.58, tournament size=12)
Evolved-best5 92.6 7.2 0.2 0.0 0.0 0.0 0.0 0.0
Initial-pop-best5 6.9 67.7 20.4 4.9 0.1 0.0 0.0 0.0
Initial-pop-median5 0.0 0.0 0.7 2.0 65.7 31.6 0.0 0.0
Initial-pop-worst5 0.0 0.0 0.0 0.0 0.0 0.0 34.1 65.9
Busiest-exhibit 0.2 9.6 33.1 55.5 1.6 0.0 0.0 0.0
Most-fresh-visitors 0.3 15.5 45.6 37.3 1.2 0.1 0.0 0.0
Stationary 0.0 0.0 0.0 0.2 31.5 68.3 0.0 0.0
Random 0.0 0.0 0.0 0.0 0.0 0.0 65.9 34.1
GP Run 6 (population=900, crossover rate=0.84, tournament size=26)
Evolved-best6 72.0 24.5 2.9 0.6 0.0 0.0 0.0 0.0
Initial-pop-best6 24.8 55.1 15.0 5.1 0.0 0.0 0.0 0.0
Initial-pop-median6 0.0 0.0 0.0 0.5 48.2 51.3 0.0 0.0
Initial-pop-worst6 0.0 0.0 0.0 0.0 0.0 0.0 31.8 68.2
Busiest-exhibit 1.0 8.5 36.4 53.5 0.6 0.0 0.0 0.0
Most-fresh-visitors 2.1 12.0 45.6 39.9 0.4 0.0 0.0 0.0
Stationary 0.0 0.0 0.1 0.4 50.8 48.7 0.0 0.0
Random 0.0 0.0 0.0 0.0 0.0 0.0 68.2 31.8

Table 3 Performance of GP using randomly selected control parameter values (population
size, crossover rate, tournament size). Simulation-based evaluation of hand-coded and evolved
controllers: Performance (rank) on 10,000 test cases (1,000 different randomized environments,
10 runs per environment). The fraction (%) of test cases where the controller was ranked n-th
(out of the 8 controllers) is shown, e.g., the Evolved-best2 controller was ranked 1st on 86.3%
of the test cases.
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where visitor compliance parameter varied between 0.0 (visitors never follow di-
rections) and 1.0 (visitors always follow directions given by the robot guide). For
each compliance parameter value, 1000 runs were executed. The results are shown
in Figure 5. The evolved controller is quite robust with respect to visitor compli-
ance and outperforms the other controllers regardless of the compliance value.

Next, we consider the effect of perturbing visitor arrival rate. During the GP-
based evolution, the arrival rate was randomly selected from (0.01,0.05). We evalu-
ated the evolved and hand-coded controllers by executing simulations where visitor
arrival rate varied between 0.005 and 0.05. For each arrival rate, 1000 runs were
executed. The results are shown in Figure 6. In this case, the evolved controller
appears to be at least as robust as the other controllers. However, as the arrival
rate increases significantly, the advantage compared to the hand-coded heuristics
disappears. This is to be expected because when the arrival rate is too high, the
exhibition space is simply too crowded – given the time constraints, it becomes
physically impossible for the robot to interact with all of the visitors and guide
them optimally, regardless of the controller strategy.

These results confirm that the evolved controller performs robustly across a
wide range of environments, and there do not appear to be subclasses of envi-
ronments which reveal obviously identifiable “holes” in the evolved controller’s
performance.
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Fig. 5 Visitor Compliance vs Controller Score (scores are the sum of 1000 runs)

4.2 Results on the Physical Robot

We evaluated the performance of the evolved and hand-crafted controllers as fol-
lows. First, we ported the Evolved-best1, Busiest-exhibit, Most-fresh-visitors,
Random, and Stationary controllers to the enon robot.

Seven experimental trials were performed to evaluate these controllers, where
each trial is defined by a set of 60 visitor arrival times.
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Fitness on each trial
Trial Evolved-best1 Busiest-exhibit Most-fresh-visitors Stationary Random
1 555.56 591.03 582.83 583.47 567.31
2 568.63 621.64 611.10 589.48 592.03
3 586.32 629.85 643.41 638.39 633.25
4 526.66 618.64 579.84 621.93 576.08
5 576.80 572.12 593.67 653.64 628.53
6 581.72 629.34 643.44 683.88 676.56
7 577.07 581.06 585.15 584.09 583.19
p-value 0.02 0.03 0.02 0.02

Table 4 Evaluation of controllers on enon robot. The p-value for a Wilcoxson signed rank
test comparison vs. the Evolved-best1 controller are shown.

Each trial (row in Table 4) shows the objective function score for each of the
5 controllers using the same sequence of visitor arrival times (this design provides
the same initial conditions for all 5 controllers and allows us to use a repeated mea-
surements / paired difference test in our statistical analysis). The data shows that
the Evolved-best1 controller consistently performs ranked 1st or 2nd compared to
the other controllers on each of the seven trials

We compared the results of the Evolved-best1 controller against each of the
other controllers using the Wilcoxson signed rank test, a standard, non-parametric,
paired difference test used to test whether the median difference between pairs of
observations is zero. As shown in Table 4, for all four comparisons (Evolved-best1
vs Busiest-exhibit, Evolved-best1 vs Most-fresh-visitors, Evolved-best1 vs
Random, Evolved-best1 vs Stationary), p < 0.05, indicating that the median dif-
ferences between Evolved-best1 and each of the other controllers is significant.
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4.3 Comparisons vs. Human Operators

In the experiments above, we have compared the evolved guide controller to some
baseline heuristic controllers and show that the evolved controller outperforms
the baseline controllers. Next, we consider human performance on our guide task.
We implemented a remote control interface to assist in decision making, where
relevant state information (e.g., for each guest, the list of exhibits which the guest
has not visited yet, the amount of time remaining in the current presentation at
every exhibit, etc.) is displayed on a GUI. In order to further assist the human
the output of the Evolved-best1, Busiest-exhibit, Most-fresh-visitors, Random,
and Stationary controllers are also displayed on the GUI.

Furthermore, the controller interface allows the human operator to suspend the
state of the entire system, including the robot, the exhibit presentations, and all
of the guests. This allows the human to carefully consider the state of the system
as well as all of the outputs from the automated controllers before making each
decision.

Thus, the human operator must perform the same decision-making task as
the automated controllers given the same raw information as the fully automated
controllers, as well as additional “advice” (i.e., the outputs of all of the automated
controllers at each particular instant), and the ability to pause the entire system
in order to make deliberate decisions.

We generated single arrival sequence of 30 visitors (using a Poisson arrival
rate of 0.03, as in the simulation). Using this arrival sequence, we evaluated the
Evolved-best1 and Random controllers (6 trials each). The Evolved-best1 controller
scores were 258.87, 279.80, 290.41, 297.03, 300.10, and 307.16 (mean=288.90,
SD=15.87). The random controller scored 295.06, 308.57, 308.99, 313.71, 320.87,
and 346.67 (mean=315.65, SD=15.87). Although the initial conditions are identi-
cal, each trial results in different results because there is considerable noise in the
system.

We then evaluated human performance on 19 trials by the same, experi-
enced human operator (the first author) on the same arrival sequence. The hu-
man operator’s score (shown in the order the trials were actually executed) were:
293.15, 282.09, 241.04, 272.49, 300.7, 300.6, 279.38, 259.15, 309.32, 266.11, 309.52,
292.0, 286.85, 234.56, 276.33, 262.7, 285.94, 315.92, and 282.02 (mean=281.54,
SD=21.51).

A Mann-Whitney U-test (a nonparametric test) was used to compare the
Evolved-best1, Random, and human results, with the following results:

– Human vs Random: p = 0.002
– Evolved-best1 vs Random: p = 0.015
– Human vs Evolved-best1: p = 0.598

The comparisons against the Random controller verify that both the human
operator and the Evolved-best1 controller significantly outperform the Random

controller in this experiment. Furthermore, there does not appear to be a signif-
icant difference between the experienced human operator and the Evolved-best1

controller. Since all 19 trials use the exact same visitor arrival sequence, the hu-
man operator was capable of on-line learning and improving performance on the
repeated trials, and these conditions should favor the human controller. However,
the data does not indicate a pattern of improvement over the trials (which are
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listed in chronological order). Note that this human performance data was origi-
nally obtained for the purpose of providing training data for a supervised learning
approach to fine-tune the behavior of the evolved controller (not described here),
so the human operator was highly motivated to obtain the best results possible.

These results demonstrate that evolution in simulation is sufficient to generate
a controller which, when transferred to a physical robot, performs comparably to
an experienced human.

5 Is the Evolutionary Robotic Approach Practical?

We now consider the cost-effectiveness of applying evolutionary robotics for our
application, compared to the baseline alternative, which is to design and implement
a controller by hand.

The total human effort to generate the evolved controller (Figure 4) was less
than 30 hours. This includes approximately 25 hours to develop and debug the
simulator (including the simulation code, GUI, unit tests, and scripts), as well
as approximately 4 hours to interface and test the simulator with a pre-existing
genetic programming library (a GP library which was implemented by one of the
authors for a previous, unrelated project [6]). We do not include the development
time for the software for tracking visitor locations and interfacing the robot to the
exhibits, which would be required regardless of the method used to develop the
controller (evolved or hand-coded). The time for building this infrastructure was
on the same order as the time to develop the code specific to evolutionary robotics
system.

Furthermore, a single run of the multi-threaded GP requires 5-6 hours to ex-
ecute on a 4-core workstation, but this is a completely unattended operation (no
human involvement), and as we showed in Section 4.1.1, the GP system can reli-
ably generate good solutions, so very little human effort is required. No time was
spent on GP parameter tuning – we used the default configuration for the GP
library.

Although we did not succeed in developing a hand-coded controller which per-
formed comparably to the evolved controller, we can attempt to estimate lower
bounds on the time required, assuming a successful controller could be developed
by hand. There are two basic approaches to developing a controller by hand. The
first approach is to use a simulator (by itself or in conjunction with the real robot)
to develop and test a controller. In this case a lower bound on development time
is the time required to implement the simulator, assuming that once the simulator
was available, a good controller could be implemented in no time – this is an unre-
alistic assumption but provides a lower bound. Any simulator implemented for this
purpose is likely to require at least as much effort to implement as the extremely
crude simulator used in our GP. Therefore, any process that involved a simulator
would have taken a minimum of 80% (total time minus the time to interface to
the GP library) of the human effort that our ER implementation required.

The other possibility for hand-coding a controller is to develop a controller on
the robot without any use of simulation. The evolved controller significantly out-
performs all of the baseline heuristics, which were the best heuristics we were able
to come up with. It is possible that there are significantly better heuristics that
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could be discovered and implemented manually by an iterative development pro-
cess using only the robot. While it is not possible to estimate how long this process
might take, we note that testing a single controller with our fitness function (i.e.,
testing the robot behavior against one particular visitor arrival pattern) requires
30 minutes, not including the time to actually implement and debug the controller,
so a controller development method which does not require simulation must com-
plete in less than 30 iterations in order to be competitive with our simulator-based
evolutionary approach. This seems non-trivial, considering our results in Section
4.3, which showed that it was quite difficult for a human operator to outperform
the evolved controller, even when presented repeatedly with the same input (visi-
tor arrival pattern) – developing a controller which performs well in general seems
quite difficult.

Based on these observations, our evolutionary approach seems to be a prac-
tical choice for our application, compared to an alternative, manual approach to
designing a controller.

6 Discussion and Future Work

We investigated an evolutionary robotics (ER) approach for high-level applications
on a service robot platform. In particular, we present a case study in applying
evolutionary robotics to synthesize a controller for a guide robot which manages
visitor traffic flow in an exhibition space such as a museum. We defined a objective
function which models visitor enjoyment, and focused on the problem of design-
ing a controller which optimizes this objective function. We used GP to evolve a
controller for this task in simulation, and transferred the controller to an actual
service robot. We experimentally evaluated several baseline heuristics, as well as
our evolved controller, and showed that the evolved heuristic significantly outper-
formed the baseline heuristics in both simulation as well as on the service robot.
We also showed that the evolved controller performs comparably to an experienced
human operator manually controlling the real robot. Thus, we showed that with
relatively little effort and no GP control parameter tuning, it is possible to obtain
a controller that is human-competitive in two respects, i.e., the evolved controller
is competitive with straightforward, hand-crafted controllers, as well as manual
control by a human operator.

The main contribution of this work is a case study of applying evolutionary
robotics to a new, high-level application (visitor traffic flow management), which
is a significantly higher-level application task than standard evolutionary bench-
marks such as navigation, locomotion and foraging. Since the commercial service
robot platform we use provides a high-level API for navigation with collision avoid-
ance, the controller we evolve outputs targets for the navigation API.

One advantage of high-level evolutionary robotics on this kind of service robot
platform is that when we seek controllers that output high-level commands, safety
is not an issue, because the lower level software (e.g., collision avoidance) ensures
safety constraints, and the worst that could possibly happen is that the evolved
controller is ineffective. This suggests that as commercial service robot platforms
continue to mature, the opportunities to apply ER in service robot applications
will likely be similar to ours case study, where the evolved controller outputs high-
level commands for APIs provided by the platform.
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Another contribution is the demonstration that in a high-level application, a
very crude simulation can be successfully used to evolve a controller which works
well when transferred to a real robot. By applying large amounts of noise to the
essential parameters of simulation, and evaluating each candidate controllers on
a large number of noisy trials in a wide range of operational environments, we
force the GP system to evolve controllers which functioned robustly in a range
of environments and operating conditions. As our simulation experiments show,
the evolved controllers perform relatively well regardless of the visitor arrival rate
or visitor compliance. The results on the real robot show that the competence of
the evolved controller extends to at least one, physical setting. Thus, our results
confirm the utility of the “envelope of noise” approach of Jakobi [14] in a different
context – while Jakobi was addressing the problem of noise in the environment,
i.e., the “reality gap” between simulation and the real world, our use of randomized
environment parameters addresses both the reality gap as well as uncertainty about
the operating conditions (e.g., visitor arrival rates).

While we have focused on GP in this paper, the main lesson from this case study
is general: when robust, high-level navigation commands are available, human-
competitive results for high-level tasks can be obtained relatively easily using
a low-fidelity, simulation-based learning method to synthesize a controller that
maps some symbolic representation of the system state to high-level navigation
commands. Other learning methods such as reinforcement learning could be used
to generate a controller based on the same state representation. A comparison of
the quality of controllers obtainable using different machine learning methods such
as reinforcement learning, as well as the time and effort required to develop the
controller using other learning methods (including the effort required to transfer
the controller from simulation to the robot), is an avenue for future work.

With respect to the visitor traffic flow management problem, this paper de-
scribes the first step in formulating robot guide behavior as an optimization and
approaching it as a machine learning problem. The next step is to scale up the
system to larger number of exhibits and consider deploying the robot guide system
to manage visitor flow in a real setting (e.g., at a poster session at an academic
conference). This will require addressing additional challenges. For example, so
far, we used a model where visitors behave in a fairly simplistic, rational man-
ner. However, visitor behavior can be more complex in reality. In fact, previous
researchers have noted that visitors can actually behave in an adversarial manner
by not following directions given by the robot, blocking the robot’s progress, or
trying to confuse the navigation system [3,28]. Therefore, future work needs to
address how our robot guide system can achieve its objectives under worst-case,
adversarial conditions. While we used a weighted objective function that considers
the “smoothness” of the visitor experience and the amount of unique interactions
the guide robot has, another direction for future work is to explicitly explore trade-
offs between these components by using a multi-objective optimization approach.
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