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Abstract. In many scheduling and resource assignment problems, it is necessary

to find a solution which is as similar as possible to a given, initial assignment. We

propose a new algorithm for this minimal perturbation problem which searches

a space of variable commitments and uses a lower bound function based on the

minimal vertex covering of a constraint violation graph. An empirical evaluation

on random CSPs show that our algorithm significantly outperforms previous al-

gorithms, including the recent two-phased, hybrid algorithm proposed by Zivan,

Grubshtein, and Meisels.

1 Introduction

In many CP applications it is necessary to find solutions that are as similar as possible

to a given, initial assignment of values to variables. For example, in a meeting schedul-

ing problem or resource scheduling problem, constraints can change unexpectedly after

a solution has been generated. This is a type of dynamic constraint satisfaction prob-

lem. Similarly, there are situations where there is an “ideal” (but possibly infeasible)

assignment of values to variables for a CSP, and the goal is to find an assignment which

differs as little as possible from the target. Another scenario where a solution similar

to a given initial state is desired occurs in staff scheduling. Employees express prefer-

ences regarding when they want to work, but their preferences must be balanced against

the staffing demands and constraints of the business, requiring a schedule that satisfies

staffing requirements while deviating minimally from employee preferences.

This paper considers search algorithms for this class of minimal perturbation prob-

lem (MPP) for CSPs, where we seek a solution that minimizes the number of vari-

ables whose values differ from a target assignment, or equivalently, the minimal num-

ber of variable changes that are necessary to a CSP solution when some of the con-

straints change unexpectedly. In particular, we focus on minimal perturbation for binary

CSPs. Previously, Ran et al. proposed an iterated deepening algorithm for the MPP that

searches the space of variable assignments that differ from the target/initial assignment

by at most d assignments, where d is the iterative deepening bound [9]. More recently,

Zivan, Grubshtein, and Meisels proposed a two-phased algorithm that interleaves the

problem of bounding the number of necessary perturbations from the initial assign-

ment, and the problem of testing if such an assignment is possible [11].

We propose a new search algorithm for the MPP, where the main features are (1) a

search space where nodes represent a set of committed variable assignments, (2) a lower

bound based on the minimal vertex covering of the current set of violated constraints,

which dominates the lower bound by Zivan et al. This generalizes an earlier, domain-

specific MPP algorithm proposed in [4].



2 Problem Definition and Preliminaries

The Minimal Perturbation Problem (MPP) is defined as follows: Let C = (V,D,C)
be a CSP, where V = v1, ..., vn is a set of variables, D = D1, ..., Dn is a set of

domains where Di is a finite discrete set of possible values for variable vi, and C =
c1, ..., cm is a set of constraints which restricts the set of values that the variables can

be simultaneously assigned.

Let I be a complete assignment for C. The objective of the MPP is to find an as-

signment A such that all of the constraints are satisfied, and the number of variables in

A whose value differs from I is minimized. Following [11], the value of variable v in

the original assignment is called the Starting Variable Assignment of v, or its SVA.

While previous work [9, 11] defined the MPP more generally, i.e., a general dis-

tance function, and a partial initial assignment, the lower bound functions used in the

previous work assume the definition above, and the actual experimental evaluations of

the previous algorithms were performed on binary CSPs based on this definition.

3 Previous Algorithms for the MPP

The first algorithm which specifically addressed the MPP defined in Sec 2 was the

Repair-Based algorithm with Arc-Consistency (RB-AC), by Ran et al. [9]. Given an

initial variable assignment I = {x1 = v1, ..., xn = vn}, let Di be the set of states which

have exactly i variables whose value are different from that of the initial state I . We call

the set D = D1 ∪ ...Dn the difference space, or D-space. The root node of this search

space is I . Nodes at depth d of the search tree contain variable assignments which differ

by d assignments from I . Each edge in the tree changes the value of one variable which

has not yet been changed by any ancestor. RB-AC searches D-space using a depth-first

iterative deepening strategy, IDA* [7]. The d-th iteration of IDA* explores the subset

of the depth-first branch-and-bound D-space search tree where at each node, the sum

f = g+h ≤ d, where g is the number of differences from the initial state in the current

solution, and h is the lower bound on the additional number of differences required

to find a conflict-free solution. RB-AC uses a simple lower bound, L1, which is the

number of variables that do not have the SVA in its domain.

Zivan, Grubshtein, and Meisels proposed HS MPP, a “hybrid” search algorithm for

the MPP [11]. Their algorithm consists of two, interleaved phases: The first phase per-

forms branch-and-bound on a binary search tree where each node represents a variable,

and the branches correspond to a decision regarding whether to assign the variable to

the same value as in the initial assignment. At each node, HS MPP-Phase1 computes

a lower bound on the number of perturbations, and prunes the search if this exceeds or

equals the current upper bound. Then, v, variable such that SVA(v) ∈ dom(v) is se-

lected. If there is no such variable (i.e., all remaining variables must be perturbed), then

HS PP-Phase2, described below, is called to test for feasibility. Otherwise, HS MPP

branches: The left branch assigns v its SVA and recursively searches the remaining

variables; the right branch of the binary search tree, HS MPP eliminates the SVA from

the domain of v, and recursively searches the remaining variables.

The HS MPP algorithm uses a lower bound, which we denote LZ , to prune the

branch-and-bound tree in HS MPP-Phase1. This bound improves upon L1 by exploiting



the fact that if there is a pair of variables which have the SVA in the domain, but the

SVAs conflict with each other, then one of these variables must be assigned a non-SVA,

so the bound can be increased relative to L1 by accounting for such pairs (see [11]).

After each decision in Phase 1, the following, limited filtering function is applied:

For each remaining variable v, SVA(v) is removed from domain(v) if SVA(v) is in-

consistent with the current assignment of SVAs.

HS MPP-Phase2 applies a standard MAC (maintaining-arc-consistency) algorithm

to the remaining variables (i.e., variables which do not have the SVA in the domain and

must be perturbed). If the MAC algorithm finds a satisfying assignment of values to vr,

then this is a solution to the MPP.

Finally, a third previous approach is by Hebrard, O’Sullivan and Walsh, who pro-

posed a GAC for distance constraints [6]. Zivan et al compared HS MPP to this GAC

method and showed that HS MPP performed significantly better on random binary

CSPs (30-40 variables) and meeting rescheduling problems.

Related Work

Other previous work has addressed problems that are related to (but different from) the

MPP formulation treated in this paper. A Dynamic CSP is a sequence of constraint sat-

isfaction problems where each instance is derived from the previous instance by mod-

ifying some constraints [2]. Verfaillie and Schiex solved Dynamic CSPs by repairing

the solution to the previous CSP instance [10]. They proposed a depth-first backtrack-

ing algorithm in D-space. Since the goal is to solve the Dynamic CSP instance, there

is no mechanism to guarantee minimal perturbation, although they incorporate variable

ordering heuristics that tend to bias the search towards a minimal perturbation solution.

El Sakkout and Wallace [3] investigated a minimal cost repair problem for scheduling.

They consider difference functions that can be expressed linearly (our MPP difference

count objective is nonlinear). Their probe backtracking algorithm does not explicitly

consider the initial schedule, and reschedules from scratch [3]. Barták et al. investi-

gated overconstrained CSPs for which there is likely to be no feasible solution without

violated constraints [1], and studied methods to seek a maximal assignment of consis-

tent variables which also differs minimally from an initial state. They also studied an

iterative repair (local search) algorithm biased to seek minimal perturbation solutions

for course timetabling [8].

4 A Commitment-Space Search Algorithm for the MPP

We now describe our algorithm for the MPP. Unlike RB-AC, which searches D-space,

and HS MPP, which searches a 2-phase search in the space of variable assignments, our

algorithm searches the space of variable commitments.

In a commitment-based search space (C-space) for the MPP, each node in the search

tree represents a complete assignment of values to variables, where some subset of the

variables are committed to their current value. Edges in the search tree represent a de-

cision to commit a variable to some value. For each variable, we represent its current

value, as well as whether a commitment has been made to the value. The root node of



this search space is the initial assignment I . We say that a variable x is committed to

value v at node N if x is assigned to v at N and every descendant of N , and uncommit-

ted otherwise.

Each node represents the result of committing some variable to a particular value.

Thus, this search space has a branching factor of d, the domain size, and a maximum

depth of n, the number of variables. We originally proposed C-space for minimal per-

turbation in [4]. However that previous work focused on a specific type of MPP (bin

packing constraint repair e.g., virtual machine reassignment in data centers), and C-

space has not been evaluated for standard, domain-independent binary CSPs. C-space

has a narrower structure (smaller branching factor) compared to D-space, at the cost of

some redundancy. See [4] for an analysis, as well as a figure illustrating example search

trees.

We evaluated both a standard depth-first branch-and-bound strategy, as well as an

iterative deepening (IDA*) strategy [7] for C-space. Although iterative deepening can

repeatedly visit the same state, in cases where the minimal perturbation solution is

close to the initial solution, the IDA* search strategy would be expected to be faster

than depth-first branch-and-bound.

For both of these strategies, a standard, most-constrained variable ordering is used,

and a min-conflicts (with respect to the original values in the initial assignment) value

ordering is used. At each node, arc consistency (AC-3) is applied for filtering. The

depth-first branch-and-bound version is shown in Algorithm 1.

Lower Bound

The new lower bound function is based on a constrained vertex covering of a constraint

violation graph. At every node in the search tree, there is a non-empty set of violated

constraints. Given the set of all violated constraints, we construct a constraint violation

graphG where each variable corresponds to a vertex in G, and there is an edge between

vertex vi and vj if a constraint between variables xi and xj is violated. A vertex cover

(VC) of a graph is a subset vc ⊂ V of the vertices such that for every edge e = (va, vb)
in G, either va ∈ vc or vb ∈ vc. A minimal vertex cover of G is a covering of G which

has minimal cardinality.

The minimal VC of a constraint violation graph is clearly a relaxation of the MPP.

The minimal VC identifies a subset of variables that could possibly eliminate all con-

straint violations, without identifying the actual values that must be assigned. The cov-

ering has one additional constraint: variables which no longer have the SVA in the

domain are forced to be included in the covering. Thus, the cardinality of the (con-

strained) minimal VC is a lower bound on the number of perturbations required to re-

sult in a conflict-free assignment of values to variables. It is easy to see that this bound

dominates the LZ bound [11].

Although computing a minimal vertex cover is NP-complete [5], computing the

minimal VC of a graph is much easier than solving the MPP (the search space is a bi-

nary tree with depth = #vars, as opposed to a tree with branch factor |Domain| for

the MPP C-space search), so the minimal VC can be used as the basis for a lower bound.

Our current implementation performs a straightforward branch-and-bound search where



each node determines whether a variable is included or excluded from the cover. A sim-

ple filtering/pruning rule is used: for every edge (va, vb), if va is excluded from the

covering, then vb must be included; conversely, if vb is excluded, then va must be in-

cluded. No other lower-bounding techniques or optimizations are used in the minimal

VC computation, but as shown below, this simple implementation suffices in practice.

Algorithm 1 C-space Search Algorithm

mpp search(uncommittedVars,committedVars,numChanges)

if get conflicts(uncommittedVars,committedVars)==∅ then

if count num perturbations(committedVars) < minimalChanges then

minimalChanges = count num perturbations(commitedVars) {replace best-so-far solution}
return success

if lowerbound(uncommitedVars,committedVars) > minimalChanges then

return failure {pruning based on lower bound}
V = select(uncommittedVars)

for all val in Order(domain(V)) do

commit(V,val) {commitment also applies filtering (arc-consistency)}
r = mpp search(uncommittedVars \ V, committedVars ∪ V)

if r==success then

return success

return failure

5 Experimental Evaluation

We evaluated the performance of the MPP algorithms using problems derived from

standard, randomly generated binary CSPs. The classes of MPPs used in the experi-

ments are defined by 5 parameters (n, k, p1, p2, δ). The first 4 parameters are used to

first generate a random, uniform binary CSP, C, where n is the number of variables, k

is domain size of all variables, p1 is the constraint density (probability that any 2 vari-

ables have a constraint), and p2 is the tightness (probability that any 2 values in a pair

of constraint variables are a nogood). Then, C is solved using a standard CSP solver. If

C is unsatisfiable, then it is discarded. If C is satisfiable, then the solution that is found

is used as I , the initial assignment for the MPP. Then, C is perturbed by replacing some

fraction δ of the constraints, resulting in a perturbed CSP C ′, and the MPP instance is

(C ′, I). For n=30 and 40 variables, we generated 30 candidate binary CSPs each for all

combinations of p1, p2, δ, where p1 ∈ 0.3, 0.4, 0.5, 0.6, 0.7, p2 ∈ 0.3, 0.4, 0.5, 0.6, 0.7,

and δ ∈ 0.05, 0.10, 0.25, 0.50, 0.75, 1.00. All of these were tested for solvability us-

ing a standard CSP solver (i.e., whether there is any satisfying assignment, regard-

less of distance from the initial configuration I). Of these, 2676 of the 30-variable

instances and 1578 of the 40-variable instances were satisfiable MPPs. Similarly, for

n=50 variables, we generated 30 candidate MPPs for all combinations of p1, p2 taken

from p1 ∈ 0.3, 0.4, 0.5, p2 ∈ 0.3, 0.4, 0.5, δ ∈ 0.05, 0.10, 0.25, 0.50, 0.75, 1.00. and

936 were satisfiable.

In the experiments below, we compare the algorithms in such a way that only these

solvable instances matter, i.e., comparisons of the time to find solutions, with a time

limit of 900 seconds. This is because unsolvable instances can be detected by running



a standard CSP solver much more quickly than any of the MPP algorithms (clearly,

checking satisfiability is a simpler problem than seeking a minimal perturbation). Our

new algorithm is at least as fast as the previous algorithms in detecting unsatisfiability.

In practice, the best strategy would be to first run a standard CSP to check for satisfia-

bility, then run a dedicated MPP solver to minimize the perturbations.

We compared the following algorithms:

– C-space/Lvc - our C-space search algorithm using the new Lvc lower bound and

depth-first branch-and-bound.

– C-space/Lvc/ID - Iterative Deepening C-space search algorithm using the Lvc lower

bound.

– HS MPP - The hybrid algorithm by Zivan et al [11].

– RB-AC/Lvc - A modified version of RB-AC algorithm by Ran et al [9], which uses

use our LV C lower bound instead of the L1 bound [9] and searches D-space using

iterative-deepening.

– C-space/LZ - C-space search algorithm using the LZ lower bound [11]. This com-

parison isolates the effect of the lower bound function Lvc compared to Lz .
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Fig. 1: n=50, cumulative number of problems that can be solved after a given time

Each algorithm was executed on each of the 30, 40, and 50-variable random binary

MPP instances, with a 900 second time limit per run. Note that although we focus

on runtime due to space restrictions, comparisons of the number of backtracks and

constraint checks are qualitatively similar to the runtime results.

Figure 1 shows an overall comparison of the MPP algorithms, and plots the cumu-

lative number of problems solved (y-axis) as the amount of time increases (x-axis) by

each algorithm for the 50-variable problems. For example, the C-space/Lvc algorithm

solved around 500 instances within 500 seconds. Overall, C-space/Lvc performed best

on the hardest instances (which require > 400 seconds), while C-space/Lvc/ID per-

formed best on problems requiring less than 400 seconds. Another interesting result is

that RB-AC with the Lvc bound performs significantly better than HS MPP, suggesting



that the success of HS MPP compared to the original RB-AC algorithm was due much

more to the lower bound than to the hybrid search strategy.

While results for 30 and 40 variable problems are not shown due to space, they look

similar, except that C-space/Lvc/ID performs relatively better with fewer variables.
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Figure 2 plots average runtime required to solve instances as a function of the dis-

tance of the solution found to the initial assignment. This only includes successful runs

and excludes runs that timed out, so some of the lines appear truncated (otherwise, for

the less successful algorithms, it is difficult to see the impact of distance because there

were so many failed runs). Overall, if the distance to a solution is within 10-15 variable

assignment changes (i.e., the amount of repair required is small), the faster algorithms

such as C-space/Lvc can solve the problems within 10 seconds (if at all).

Figure 3 compares key pairs of MPP algorithms on all of the 30, 40, and 50 variable

problems. Each figure plots the runtimes for all instances on a pair of algorithms A1, A2,

where the x-coordinate is the runtime of A1 on the instance, and the y-coordinate is the

runtime of A2. An x or y value of 900 indicates failure to solve the instance. The straight

diagonal line is (x=y), i.e., points above the line indicate that C-space/Lvc performed

better, while points below the line indicate that the other algorithm performed better.

Figure 3a shows that C-space/Lvc clearly outperforms HS MPP, the previous state-

of-the art algorithm. The average ratio of runtimes for HS MPP vs C-space/Lvc is 86.48

for all problems that were solved by at least 1 of these solvers, and 160.35 for problems

that took more than 60 seconds for the faster solver on each instance.

Figure 3d compares C-space/Lvc/ID and RB-AC/Lvc. These two algorithms, which

both use iterative deepening search and the same lower bound (Lvc) differ mainly in the

choice of search space (C-space and D-space, respectively). Figure 3d shows that C-

space/Lvc/ID clearly outperforms RB-AC/Lvc on almost every problem instance, sug-

gesting that C-space is better structured for search than D-space. However, the advan-

tage of C-space over D-space seems to be less pronounced for this class of benchmarks

compared to the virtual machine reassignment problem in [4].

Figure 3b compares C-space/Lvc and C-space/LZ . Combined with Figures. 1, and 2

the results show that iterative deepening is a good strategy for quickly solving relatively
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Fig. 3: Pairwise comparison of MPP algorithms (includes all 30,40, and 50 variable problems)

easy problems (problems where the distance from I to a solution is small); however,

for harder problems (where the distance from I to a solution is large), straightforward

depth-first branch-and-bound seems to be a more robust choice.

Figure 3c compares C-space/Lvc and C-space/LZ . The results show that the new

vertex-cover based lower bound Lvc clearly outperforms the previous lower bound LZ

by Zivan et al [11]. The average ratio of runtimes using lower bound LZ vs Lvc is 1.73

for all instances solved by at least one solver, and 2.10 for instances that required 60

seconds or more for the faster solver.

6 Discussion and Conclusions

We proposed a search algorithm for optimal solutions to the min-perturbation prob-

lem. Our main contributions are: (1) We showed that our new CSpace/Lvc algorithm

significantly improves upon the previous state of the art (HS MPP) for random binary

CSPs generated with a wide range of parameters. (2) We showed that both Lvc, the new

lower bound for the MPP based on vertex covering of the constraint graph, as well as

the C-space search space contribute significantly to the performance of the new algo-

rithm (Fig. 3). Future work includes evaluation on applications such as employee shift

rescheduling and meeting rescheduling.
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