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Abstract. Many problems require minimally perturbing an initial state
in order to repair some violated constraints. We consider two search
spaces for exactly solving this minimal perturbation repair problem: a
standard, difference-based search space, and a new, commitment-based
search space. Empirical results with exact search algorithms for a min-
cost virtual machine reassignment problem, a minimal perturbation re-
pair problem related to server consolidation in data centers, show that
the commitment-based search space can be significantly more efficient.

1 Introduction

Most research on constraint satisfaction and optimization focus on generating
solutions from scratch – given a set of variables and constraints, generate an (op-
timal) assignment that satisfies the constraints. In practice, there are many situ-
ations where it is necessary to find solutions to constraint satisfaction problems
that are as close as possible to a given, initial state. One example is related to
server consolidation, the use of virtual machines to consolidate multiple servers
onto fewer servers [15]. There is currently great interest in server consolidation
due to opportunities for improved energy efficiency and cost reduction. Server
consolidation can be modeled as a bin packing problem [8]. Consider a set of
n virtual machines (VMs), where each VM has a weight (representing resource
demand). Given m physical servers, each with a some capacity (representing ag-
gregate CPU/RAM resources) the server consolidation problem is the problem
of assigning the n VMs to the m physical servers, such that each VM is assigned
to exactly one physical server, and for every physical server, the sum of the
assigned VM demands is within the capacity of the physical server.

Suppose that after the initial server assignments are made, the resource re-
quirements of the VMs deviate from the original forecasts, resulting in some
servers being overloaded. VMs can be reassigned among the servers in order to
rebalance the loads. However, migration of a VM between servers incurs costs
(e.g., system administration costs, possible downtime for a service). The Min-

Cost Virtual Machine Reassignment Problem (VMRP) seeks a new assignment
of VMs to servers such that no server is overloaded, and the number of jobs that
are moved from their initial assignment is minimized. Heuristics for this problem
were investigated in [2]. An approximation for a similar problem was considered
in [1]. Similar problems arise for process migration in distributed systems.

⋆⋆ This research supported by JSPS, JST, MEXT, and the Okawa Foundation.



Another scenario where a solution similar to a given initial state is desired
occurs in staff scheduling. Employees express preferences regarding when they
want to work, but their preferences must be balanced against the staffing de-
mands and constraints of the business, requiring a schedule that satisfies staffing
requirements while deviating minimally from employee preferences.

This general class of Min-Perturbation Repair Problems (MPRP) seeks to
repair an initial assignment of values to variables (i.e., find a conflict-free so-
lution), with minimal cost, where cost is the number of differences between a
candidate solution and the initial assignment. While a standard CSP seeks a so-
lution which does not violate any constraints, the MPRP imposes the additional
goal of minimizing the distance from an initial assignment of values to variables.

This paper considers search algorithms for the MPRP, focusing on alterna-
tive search spaces. In Section 2, we consider a standard, difference based search
space which has been used in previous work on the MPRP, as well as a new,
commitment-based search space. Using the VMRP as a case study, we exper-
imentally evaluate these search spaces (Section 3). We discuss related work in
Section 4, and conclude in Section 5

2 Search Spaces for Minimal Perturbation Repair

Given an initial variable assignment I = {x1 = v1, ..., xn = vn}, let Di be the set
of states which have exactly i variables whose value are different from that of the
initial state I. We call the set D = D1 ∪ ...Dn the difference space, or D-space.
The root node of this search space is I. Nodes at depth d of the search tree
contain variable assignments which differ by d assignments from I. Each edge
in the tree changes the value of one variable which has not yet been changed
by any ancestor. A standard depth-first branch-and-bound (DFBNB) can be
applied to explore this search space. Problem-specific pruning techniques, such
as those described in Sec 3, are applied at each node.

Instead of a depth-first search strategy, we can also use a best-first search
strategy, such as Iterative-Deepening A* (IDA*) [11], which expands nodes in
a best-first order using linear space (at the cost of reopening some nodes). The
admissible heuristic function, h, used by IDA* is the same as the lower bounding
function used for DFBNB, and the d-th iteration of IDA* explores the subset of
the DFBNB D-space search tree where at each node, the sum f = g + h ≤ d,
where g is the number of differences from the initial state in the current solution,
and h is the lower bound on the additional number of differences required to find
a conflict-free solution. Ran et al [13] applied iterative-deepening in D-space to
solve a minimal perturbation problem for binary CSPs.

We now introduce commitment, a useful concept for MPRP search algo-
rithms. A variable x is committed to value v at node N if x is assigned to v
at N and every descendant of N , and uncommitted otherwise. For variables
x1, ..., xn, we denote a search state as S = {x1 = v1, ..., xn = vn}, or more
concisely, {v1, ..., vn}. Furthermore, the values are underlined if the variable is
committed to that value. In a 2-variable MPRP where the current assignments



are x1 = 1, x2 = 2, and we have committed x1 = 1, we can denote this state as
{x1 = 1, x2 = 2}, or more concisely, {1, 2}. At the root node of this search space,
the variables are assigned the values of the initial assignment I, and all variables
are uncommitted. Furthermore, we annotate a value to be different from the
initial state I with an asterisk (*). Thus, {1, 3∗, 2} denotes a state where x1 is
committed to value 1, x2 to 3, and x3 is uncommitted (but assigned to 2), and
where the value of x2 differs from the value of x2 in the initial state. Figure 1
shows a search tree for the VMRP. The sibling nodes are ordered according to
a variable ordering implemented in the search algorithm (lex order in Fig. 1).

One issue with the D-space search tree is symmetry, e.g., given two variables
x1 and x2, assigning x1 = 2 first, followed by x2 = 1, is symmetric to assigning
x2 = 1, then x1 = 2. One approach to eliminating such symmetries is a stan-
dard nogood-based approach [13]. We use a different approach, which eliminates
symmetries by asserting commitments on the siblings of a node. For example,
in Figure 1, node B is the result of starting with the initial state A and moving
the VM with weight 20 from Sc=10, the server with capacity 10, to Sc=25, the
server with capacity 25. For all of the siblings of node B, we commit this VM to
Sc=10 (i.e., forbid moving it to Sc=25). This is equivalent to saying that assign-
ing the VM with weight 20 to Sc=10 is nogood for all siblings and descendants
of B. Thus, a separate representation for nogoods is unnecessary. This method
generalizes straightforwardly when there are more than 2 possible values. 1

An explicit notion of commitment (as opposed to just assignment) in a MPRP
is very useful for purposes other than symmetry elimination. For example, in a
VMRP, if we have committed a VM with weight 8 to a server S with capacity
10, then all nodes which assign more than 2 additional units of demand to S can
be pruned. Note that merely assigning a VM with weight 8 (for example, in the
initial assignment I) does not allow the same pruning, because it is possible to
move that VM out of S, allowing another VM with demand greater than 2 to be
assigned to S. It is the commitment which allows us to prune. Similarly, note that
this type of pruning is not captured by the nogoods used in [13]. Commitments
also constrain the feasible domains for a variable, which has a significant impact
on the effectiveness of variable ordering (we use most-constrained ordering).

A new, alternative search space for searching the space of commitments,
rather than differences, is a commitment-based search space (C-space), where
each node in the search tree represents a partially committed assignment of
variables to values, and edges represent a commitment of a variable to some
value. For each variable, we represent its current value, as well as whether a
commitment has been made to the value. The root node of this search space
is I. Nodes at depth d of the search tree contain variable assignments with d
commitments.2 A sample C-space search tree is shown in Figure 1. Each edge
represents a single commitment. While all edges in D-space have cost 1, some

1 Another class of symmetries, not handled by nogoods or commitments, arises with
low-precision instances, e.g., multiple VMs with the same weight; this is future work.

2 In D-space, nodes at depth d can contain more than d commitments because of the
commitments asserted for symmetry elimination.



[A](20,6)10(5,4)25,d=0
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Difference Space Search Tree

(D-space)

[a](20,6)10(5,4)25,d=0

[b](20,6)10(5,7)25
d=0,c=1

[c](6)10(5,4,20
*)25

d=1,c=1

[d](6)10
(5,4,20*)25
d=1,c=2

[e]()10
(5,4,20*,6*)25

d=2,c=2[f](6)10
(5,4,20*)25
d=1,c=3

[g](6,5*)10
(4,20*)25
d=2,c=3

[h](6)10
(5,4,20*)25
d=1,c=4

[i](6,4*)10
(5,20*)25
d=2,c=4

Commitment-Space Search Tree

(C-space)

Fig. 1. Difference-Space and Commitment-Space search trees for VMRP with 2 servers
(c1 = 10, c2 = 25), and 4 VMs (w1 = 20, w2 = 6, w3 = 5, wr = 4). The initial
assignment is I = {1, 1, 2, 2}. For each node, d = # of perturbations from the initial
assignment I, and c = # of commitments. Underlined values are committed, and an
asterisk (*) indicates that the committed value is different from I. For example, node
H in D-space has 4 committed variables, where 2 have values different from the initial
assignment. Infeasible nodes are pruned (slash through node).

edges in C-space have cost 0 (e.g,. the edges a → b, c → d, d → f, f → h in
Figure 1). As with D-space, C-space can be searched using either the DFBNB
or IDA*.

D-space can be seen as the subset of C-space where all committed decision
variables are assigned a value different from the initial assignment. For example,
given variables x1, x2 and initial assignment I = {1, 2}, the assignment {3, 2} is
in D-space because v1 is committed to a value that is different than in I, but
{1, 2} is not in D-space because x1 is committed to the same value as in I. Each
node in D-space corresponds to a unique assignment of variables to values. In
contrast, C-space has multiple nodes representing the same assignment of values
to variables, except that the nodes have different commitments. For example, the
search state {1, 2} and {1, 2} represent the same variable assignments, but in the
latter, a commitment has been made to assign x1 to 1 for all of its descendants,
whereas the former has not made any commitments.

In a problem with n variables with a domain of m possible values, the search
tree for D-space contains TD = mn nodes, because there is a 1-to-1 correspon-
dence between the unique assignments of variables to values and the nodes in



the D-space search tree (after elimination of symmetric nodes), and there are
mn unique assignments. This tree does not have a regular branching factor; the
first level below the root node consists of the n(m− 1) assignments which differ
from the initial assignment by exactly 1.

The root node of the C-space search tree is the initial assignment, and at each
tree depth, we commit a variable to one of m values (one of the m values is the
initial value in I). Thus, the C-space search tree has size TC = 1+m+m2+...mn,
and by straightforward manipulations, TC = (mn+1 − 1)/(m − 1). Comparing
TD and TC , TC/TD approaches 2 in the worst case (when m = 2).

Despite the redundancy in C-space compared to D-space, C-space has a lower
branching factor (m) compared to D-space (depends on node; n(m − 1) at first
level of the search tree). Given a comparable number of nodes, and the same set
of pruning techniques, a narrower, deeper tree is easier to search than a wider
tree, because a successful pruning in the narrower tree tends to prune more
nodes than a successful pruning at the same depth in the wider tree. Thus, the
main, potential advantage of C-space is in reorganizing the search tree structure
from the relatively “top-heavy” D-space tree to a relatively narrow tree with
branching factor m, at the cost of some redundancy.

3 Experimental Comparison of MPRP Algorithms for

the VMRP

We evaluated search algorithms for the VMRP based on the search strategies
described above, enhanced with the following VMRP-specific bounds.

A server is oversubscribed if the sum of the VM weights assigned to it exceeds
its capacity. A lower bound LBO (for pruning in DFBNB and for the admissible
heuristic h in IDA*) is computed as follows: For each oversubscribed server S,
sort the uncommitted VMs assigned to S in non-decreasing order, and count the
number of VMs that must be removed from S in this order such that usage no
longer exceeds capacity. For example, for the VMRP state {(5, 6)(4, 3)(10, 1, 2)}
where server capacity is 10, LBO = 3. This is because either the VM with weight
5 or 6 must move from the first server, and the 1 and 2 must move from the
third server (the VM with weight 10 is excluded from consideration because it
is uncommitted). In addition, there are some bounds based on the wasted space
in the servers, which we detailed in a workshop paper [7]. However, since those
other VMRP-specific techniques affect all search strategies equally, and have less
than a factor of 2 impact on runtime, we omit the details here due to space.

A common scenario for server consolidation in practice involves consolidat-
ing tens of services into fewer servers, where the target ratio of VMs to physical
servers is commonly around 3-5 [3]. We generated solvable, random benchmarks
based on this scenario as follows. For each server sj , 1 ≤ j ≤ m (all servers with a
capacity of 1000), VMs were uniformly generated in the range [200, 400] and as-
signed to sj until the remaining capacity was under 100. At that point, one ’filler’
VM was generated, whose weight was constrained such that the slack (remaining
capacity) in sj was between 0 and 20. Minimizing the slack in this way increases



Commitment Space (C-space) D-space

DFBNB IDA* IDA*/B IDA* IDA*/NG

m fail time nodes fail time nodes fail time nodes fail time nodes fail time nodes

5 0 0.1 34481 0 0.05 10379 0 0.23 81431 0 0.17 42783 0 0.18 25770

6 0 1.9 5.0e5 0 0.4 7.2e4 0 3.3 1.1e6 0 3.0 7.6e5 0 4.54 5.6e5

8 4 119.9 2.0e7 0 32.4 5.3e6 8 157.0 5.4e7 8 104.7 2.9e7 6 52.6 6.6e6

10 28 112.5 1.5e7 14 150.6 2.1e7 29 251.3 1.1e8 29 156.3 5.2e7 23 145.8 13.5e7

12 30 - - 26 267 2.8e7 30 - - 30 - - 30 - -

Table 1. Virtual Machine Reassignment Problem results with varying # of servers
(m) The fail column indicates # of instances (out of 30) not solved within the time
limit (600 seconds/instance). The time and nodes columns show average runtime and
nodes generated on the successful runs, excluding failed runs.

the instance difficulty. Then all the VMs were removed from the servers, shuffled
and reassigned to the servers in a round-robin manner, resulting in a solvable
VMRP instance where each server has a balanced number of VMs, but some
servers are overloaded. We tested each of the search algorithm configurations
on 30 instances with m varying from 5 to 12, with a time limit of 600 seconds
per instance on a 3.0GHz Intel Core2 processor. We used a most-constrained
variable ordering and a lexicographic value ordering for all algorithms (results
using different variable and value ordering strategies were similar). In addition
to combinations of C-space and D-space with DFBNB and IDA*, we also ran
two additional configurations: (1) The C-space+IDA*/B configuration is similar
to C-space+IDA*, except that all pruning is disabled for nodes which have the
same variable assignment as their parents (i.e., the “extra” nodes resulting from
cost 0 edges in C-space which are not present in D-space, such as nodes b, d,
f, h in Figure 1). At all other nodes, pruning is enabled as in C-space+IDA*.
This tests how pruning at these “extra” nodes impacts C-Space+IDA*. (2) The
D-space+IDA*/NG configuration is similar to D-space+IDA*, except that this
algorithm is based on the iterative deepening algorithm in [13], which, on the
d-th iteration, enumerates variable assignments with at most d differences com-
pared to the initial assignment. However, it does not assert commitments, and
nogoods are used for symmetry pruning. While this searches the same space of
variable assignments as D-space, the lack of commitments means that variable
ordering and bound-based pruning techniques are less effective.

Table 1 shows the results. The fail column indicates the number of instances
(out of 30) that were not solved within the time limit. The time and nodes

columns show average time spent and nodes generated on the successful runs,
excluding the failed runs.

As shown in Table 1, C-space+IDA* significantly outperformed the other
algorithms. D-space+DFBNB is not shown due to space, but performed sig-
nificantly worse than D-space+IDA* and C-space+DFBNB. C-space+IDA*/B
performs significantly worse than C-space+IDA*, and is comparable with D-
space+IDA*, indicating that in fact, pruning at the “extra”, inner nodes in C-
space plays a significant role in enhancing the performance relative to D-space.



The poor performance of D-space+IDA*/NG, which does not assert any commit-
ments, shows the importance of exploiting commitments for pruning and variable
ordering. Similar results were obtained with VM sizes in the range [100, 300]

4 Related Work

Several techniques for solving CSPs and combinatorial optimization problems
which apply some backtracking strategy to a nonempty variable assignment
(similar to our algorithms) have been previously proposed, including [5, 14]. Al-
though these techniques use a partial or complete variable assignment to guide
the search for a solution, they do not have an explicit goal or mechanism for
ensuring a minimal count of perturbations from a particular initial assignment.

Previous work has explicitly addressed minimal perturbation. Ran, et al.
proposed iterative-deepening in D-space for binary CSPs [13], with symmetry
pruning based on nogoods. El Sakkout and Wallace [6] considered a minimal cost
repair problem for scheduling. They consider difference functions that can be ex-
pressed linearly - the MPRP objective of minimizing difference count is excluded
([6],p.368). Their probe backtracking algorithm does not explicitly consider the
initial schedule, and reschedules from scratch. Barták et al. investigated overcon-
strained CSPs for which there is likely to be no feasible solution without violated
constraints [4], and studied methods to seek a maximal assignment of consistent
variables which also differs minimally from an initial state. They also studied
an iterative repair (local search) algorithm biased to seek minimal perturbation
solutions for course timetabling [12].

IDA* in C-space is related to Limited Discrepancy search (LDS) [9] and
its variants, as both algorithms search a space which is characterized by some
notion of “discrepancy”. LDS can be viewed as a best-first search, where the
cost of a node is the number of discrepancies (from the first value returned by a
value ordering heuristic) [10]. Let δ be the class of all value ordering heuristics
where the first value returned by the ordering is the value in the initial state.
Using some value ordering from δ, we can implement LDS in C-space which is
similar to IDA* in C-space. The differences are: (1) On the d-th iteration, LDS
explores nodes with up to d discrepancies, while IDA* searches nodes with cost
estimate (Section 2) f ≤ d. The reason for this difference is that the goal of
LDS to find a solution for a standard CSP – it is not explicitly trying to find a
min-perturbation solution. The lack of a nontrivial bound/heuristic means that
LDS performs even less pruning than C-space+IDA*/B (which at least prunes
at all non-redundant nodes) (2) LDS specifies a specific value ordering strategy,
i.e., a policy from the class δ, whereas IDA* (as well as DFBNB) does not specify
a particular value ordering among sibling nodes (our VMRP experiments used
lexical ordering). Thus, LDS, when applied directly to the MPRP, is a special
case of C-space IDA* with a trivial lower bound (h = 0) and a value ordering
heuristic from δ. On the VMRP, we found that all the C-space algorithms in
Table 1 significantly outperforms LDS (more than an order of magnitude).



5 Conclusions

We investigated exact search algorithms for repairing constraint violations with a
minimal number of perturbations from an initial state. Starting with a straight-
forward difference-based search space which enumerates differences from the
initial assignment, we showed that introducing an explicit notion of commit-
ments to values allows elimination of symmetries (subsuming nogoods), as well
as domain-specific pruning. We then propose a commitment space, which re-
organizes the search tree into a regular, narrow structure at the cost of some
redundancy. Experimental results for the Virtual Machine Reassignment Prob-
lem, a min-perturbation variant of bin packing, show that search in C-space is
significantly more efficient than search in D-space, and that the combination of
C-space with IDA* result in the best performance for the VMRP. Although we
used the VMRP as an example, C-space and D-space are general notions for
MPRP problems, and future work will investigate additional MPRP domains.
Some preliminary results for an antenna-scheduling related domain are in [7].
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