
Tiebreaking Strategies for A* Search: How to Explore the Final Frontier

Masataro Asai and Alex Fukunaga
Graduate School of Arts and Sciences

The University of Tokyo

Abstract
Despite recent improvements in search techniques for cost-
optimal classical planning, the exponential growth of the size
of the search frontier in A* is unavoidable. We investigate
tiebreaking strategies for A*, experimentally analyzing the
performance of standard tiebreaking strategies that break ties
according to the heuristic value of the nodes. We find that
tiebreaking has a significant impact on search algorithm per-
formance when there are zero-cost operators that induce large
plateau regions in the search space. We develop a new frame-
work for tiebreaking based on a depth metric which mea-
sures distance from the entrance to the plateau, and propose
a new, randomized strategy which significantly outperforms
standard strategies on domains with zero-cost actions.

1 Introduction
This paper investigates tiebreaking strategies for A∗, the
standard search algorithm for finding an optimal-cost path
from an initial state s to some goal state g ∈ G in a search
space represented as a graph (Hart, Nilsson, and Raphael
1968). In each iteration, A∗ selects and expands a node n
from the OPEN priority queue. n is the node which has the
lowest f -cost in OPEN, where for node n, f(n) is the sum
of g(n), the cost of the current path from the initial state to
n, and h(n), a heuristic estimate of the cost from n to a goal
state. A∗ returns an optimal solution when h is admissible,
i.e., when h ≤ h∗, where h∗ is the optimal distance to the
goal.

If f∗ is the cost of the optimal solution, the effective
search space of A∗ is the set of nodes with f(n) ≤ f∗, and
much of the work in the search and planning literature has
focused on reducing the size of this effective search space by
developing more accurate, admissible heuristic functions.

In many problems, the size of the last layer of search
(which explores the set of nodes with f(n) = f∗) accounts
for a significant fraction of the effective search space of
A∗. Figure 1 plots the number of states with f(n) = f∗

(y-axis) vs. the # of states with f(n) ≤ f∗ for 1104 prob-
lem instances from the International Planning Competition
(IPC1998-2011). For many instances, a large fraction of the
nodes in the effective search space have f(n) = f∗. For
example, in the Openstacks domain, almost all states with

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

f(n) ≤ f∗ have cost f∗ due to the large number of actions
with cost 0. In such domains, the tiebreaking policy which
decides which nodes to expand in the final frontier can have
a significant impact on the performance of A∗.

In this paper, we investigate the tiebreaking strategy used
by A∗, which is the policy for selecting which node to ex-
pand among nodes with the same f -cost. It is widely be-
lieved that among nodes with the same f -cost, ties should be
broken according to h(n), i.e., nodes with smaller h-values
should be expanded first. While this is a useful rule of thumb
in many domains, it turns out that tiebreaking requires more
careful consideration, particularly for problems with large
plateaus – regions of the search space with the same f and
h values.

We first empirically evaluate standard tiebreaking strate-
gies for A∗, and show that (1) a Last-In-First-Out (lifo) pol-
icy tends to be more efficient than a First-In-First-Out (fifo)
policy, and (2) tiebreaking according to the heuristic value h,
which frequently appears in the heuristic search literature,
has little impact on the performance as long as a lifo pol-
icy is used. We show that there are significant performance
differences among tiebreaking strategies when domains in-
clude zero-cost actions. While there are relatively few do-
mains with zero-cost actions in the IPC benchmark set, we
argue that zero-cost actions naturally occur in practical cost-
minimization problems.

In order to solve such problems more efficiently, we
propose tiebreaking methods based on a notion of depth
within the plateau, corresponding to the number of steps
a node is from the “entrance” to the plateau. We empiri-
cally show that: (1) a randomized, depth-based strategy sig-
nificantly outperforms other tiebreaking strategies using the
same heuristic function; (2) although depth is a component
of a multi-level tiebreaking strategy, the depth is the princi-
pal factor in determining performance; and (3) depth-based
tiebreaking is robust, in the sense that it does not rely on
a particular action ordering in the domain definition. Note
that all tiebreaking strategies in this paper maintain the opti-
mality of the search algorithm because they only affect node
expansion order among the nodes with the same f -cost.

We report our results using landmark-cut (LMcut)
(Helmert and Domshlak 2009) and merge-and-shrink
(Helmert et al. 2014) heuristics. Due to space, detailed re-
sults are only provided for LMcut. A more complete, de-

100

102

104

106

108

100 102 104 106 108

of

 N
od

es
 w

it
h

f
=

 f
*

Total Number of Nodes

y=x

Figure 1: The # of nodes with f = f∗ (y-
axis) compared to the total # of nodes in the
search space (x-axis) with f ≤ f∗ on 1104
IPC benchmark problems, using modified
Fast Downward with LMcut which gener-
ates all nodes with cost f∗.

100

102

104

106

108

100 102 104 106 108

of

 N
od

es
 w

it
h

f
=

 f
* , h

 =
 0

Total Number of Nodes

openstacks-opt11
cybersec
y=x

Figure 2: Similar to Figure 1; y-axis shows
nodes with f = f∗, h = 0, which forms
the final plateau when h-based tiebreaking
is enabled. Note that many Openstacks and
Cybersec instances are near the y = x line.

100

102

104

106

108

100 102 104 106 108

of

 N
od

es
 w

it
h

f
=

 f
* , h

 =
 0

Total Number of Nodes

y=x

Figure 3: Similar to Figure 2, but
for 620 instances from our ze-
rocost domains (Sec. 5), where
zero-cost actions induce very
large plateaus.

tailed set of results, including color figures, is available at the
author’s website (http://guicho271828.github.io/publications/).

2 Preliminaries and Definitions
We first define some notation and terminology used through-
out the rest of the paper. A tiebreaking strategy selects from
among nodes with the same f -value. Tiebreaking strategies
are denoted as [criterion1, criterion2, ..., criterionk], which
means: If there are multiple nodes with the same f -value,
first, break ties using criterion1. If there are still multiple
nodes remaining, then break ties using criterion2 and so on,
until a single node is selected. The first-level tiebreaking pol-
icy of a strategy is criterion1, the second-level tiebreaking
policy is criterion2, and so on.

A plateau is a set of nodes in OPEN with both the same
f and same h costs. A plateau whose nodes have f -cost fp
and h-cost hp is denoted as plateau (fp, hp). An entrance
to a plateau (fp, hp) is a node n ∈ plateau (fp, hp), whose
current parent is not a member of plateau (fp, hp). The final
plateau, is the plateau containing the solution found by the
search algorithm. In A∗ using admissible heuristics, the final
plateau is plateau (f∗, 0).

3 Background: Tiebreaking Strategies in A∗

If multiple nodes with the same f -cost are possible, A∗ must
implement some tiebreaking policy (either explicitly or im-
plicitly) which selects from among these nodes. The early
literature on heuristic search seems to have been mostly ag-
nostic regarding tiebreaking. The original A∗ paper, as well
as Nilsson’s subsequent textbook states: “Select the open
node n whose value f is smallest. Resolve ties arbitrarily,
but always in favor of any [goal node]” (Hart, Nilsson, and
Raphael 1968, p.102 Step 2), (Nilsson 1971, p.69). Pearl’s
textbook on heuristic search specifies that best-first search
should “break ties arbitrarily” (1984, p.48, Step 3), and does
not specifically mention tiebreaking for A∗. To the best of
our knowledge, the first explicit mention of a tiebreaking
policy that considers node generation order is by Korf in
his analysis of IDA*: “If A∗ employs the tiebreaking rule

of ’most-recently generated’, it must also expand the same
nodes [as IDA*]”, i.e., a lifo ordering.

In recent years, tiebreaking according to h-values has be-
come “folklore” in the search community. Hansen and Zhou
state that “It is well-known that A∗ achieves best perfor-
mance when it breaks ties in favor of nodes with least h-cost”
(Hansen and Zhou 2007). Holte writes “A∗ breaks ties in fa-
vor of larger g-values, as is most often done” (Holte 2010,
note that since f = g+ h, preferring large g is equivalent to
preferring smaller h). In their detailed survey/tutorial on effi-
cient A∗ implementations, Burns et al. (2012) also break ties
“preferring high g” (equivalent to low h). Thus, tiebreak-
ing according to h-values appears to be ubiquitous in prac-
tice. To our knowledge, an in-depth, experimental analysis
of tiebreaking strategies for A∗ is lacking in the literature.

Although the standard practice of tiebreaking according
to h might be sufficient in some domains, further levels
of tiebreaking (explicit or implicit) are required if multiple
nodes can have the same f and h values. While the survey
of efficient A∗ implementation techniques in (Burns et al.
2012) did not explicitly mention 2nd-level tiebreaking, their
library code (https://github.com/eaburns/search) first breaks ties
according to h, and then breaks remaining ties according
to a lifo policy (most recently generated nodes first), i.e.,
a [h, lifo] strategy. Although not documented, their choice
of a lifo 2nd-level tiebreaking policy appears to be a natural
consequence of the fact it can be trivially, efficiently imple-
mented in their two-level bucket (vector) implementation of
OPEN. In contrast, the current implementation of the state-
of-the-art A∗ based planner Fast Downward (Helmert 2006),
as well as the work by (Röger and Helmert 2010) uses a
[h, fifo] tiebreaking strategy. Although we could not find an
explanation, this choice is most likely due to their use of
alternating OPEN lists, in which case the fifo second-level
policy serves to provide a limited form of fairness.

4 Evaluation of Standard Strategies
We evaluated tiebreaking strategies for domain-independent,
classical planning. In our experiments, the planners are

100

104

108

100 104 108

ev

al
ua

ti
on

 b
y

[h
,li

fo
]

evaluation by [h,fifo]

y=x
y=x/10
others
Cybersec
Openstacks-Opt11

Figure 4: # of evaluations of standard fifo vs lifo second-level
tiebreaking, with first-level h tiebreaking. lifo evaluates less
than 1/10 of the nodes evaluated by fifo in Cybersec and
Openstacks.

based on Fast Downward (revision 6251), and all experi-
ments are run with a 5-minute, 2GB memory limit for the
search binary (FD translation/preprocessing times are not
included in the 5-minute limit). All experiments were con-
ducted on Xeon E5410@2.33GHz CPUs. We used 1104 in-
stances from 35 standard benchmark domains.

We first compared two commonly used tiebreaking strate-
gies, [h, fifo], [h, lifo], which first break ties according to h,
and then apply fifo or lifo second-level tiebreaking, respec-
tively. Detailed results for the LMcut heuristic (Helmert and
Domshlak 2009), as well as summary results for the M&S
heuristic (Helmert et al. 2014), are shown in Table 1 (left-
most 2 columns). Differences in coverage are observed in
several domains, and [h, lifo] outperforms [h, fifo] in total.
Figure 4 gives us a more fine-grained analysis by compar-
ing the number of node evaluation (computations of LMcut)
of the [h, lifo] and [h, fifo] strategies. It shows that the dif-
ference in the # of nodes evaluated can sometimes be larger
than a factor of 10 (Openstacks, Cybersec domains).

Is h-Based Tiebreaking Necessary? Table 1 also shows
the results of [fifo] and [lifo], which rely only on fifo or lifo
tiebreaking. [lifo], which simply breaks ties among nodes
with the same f -cost by expanding most recently generated
nodes first (Korf 1985), clearly dominates [fifo].

Interestingly, the performance of the [lifo] strategy is com-
parable to [h, lifo] and [h, fifo], the standard two-level strate-
gies that first break ties according to h. This may be sur-
prising, considering the ubiquity of h-based tiebreaking in
the search and planning communities. However, lifo behaves
somewhat similarly to h-based tiebreaking, in the follow-
ing sense: lifo expands the most recently generated node
n. For any child n′, if the heuristic function is admissi-
ble and f(n′) = f(n), there are only 2 possibilities : (1)
g(n′) > g(n) and h(n′) < h(n), or (2) g(n′) = g(n) and
h(n′) = h(n), because g(n)+h(n) = g(n′)+h(n′). Thus,
as lifo expands nodes in a “depth-first” manner, the nodes
that continue to be expanded by lifo’s depth-first explo-
ration have non-increasing h-values, much like in h-based
tiebreaking. Although in general, the expansion order of
[lifo] is not the same as that of h-based tiebreaking strate-
gies, this might explain why their performances are compa-
rable. An in-depth investigation of the behavior of [lifo] vs.

h-based tiebreaking is a direction for future work.

Plateaus and Tiebreaking In Figure 4, we observed that
large performance differences between 2-level tiebreaking
strategies [h, lifo] and [h, fifo] tend to occur in problems
where there are many nodes with the same f and h values,
creating large plateau regions where the heuristic does not
provide any useful guidance – by definition, these plateau
regions require a blind search (because all nodes have the
same f, h) which relies solely on the tiebreaking criterion.

Figure 2 plots the size of the final plateau on 1104 IPC
benchmark instances. The y-axis represents the # of nodes
with f = f∗, h = 0, i.e., the final plateau, and the x-
axis represents the total # of nodes with f ≤ f∗. In some
domains such as Openstacks and Cybersec, the planner
spends most of the runtime searching the final plateau even
with h tiebreaking, and thus the runtime on these domains
varies significantly depending on the second-level tiebreak-
ing strategy.

5 Domains with Zero-Cost Actions
Openstacks is a cost minimization domain introduced in
IPC-2006, where the objective is to minimize the number
of stacks used. There are many zero-cost actions (i.e., ac-
tions that don’t increase the number of stacks), and they
prevent the standard heuristics from producing informative
guidance.

Although domains with zero-cost actions are not common
in the current set of benchmarks, we argue that such domains
are of an important class of models for cost-minimization
problems, i.e., assigning zero costs make sense from a
practical, modeling perspective. For example, consider the
driverlog domain, where the task is to move packages be-
tween locations using trucks. The IPC version of this domain
assigns unit costs to all actions. Thus, cost-optimal planning
on this domain seeks to minimize the number of steps in the
plan. However, another natural objective function would be
the one which minimizes the amount of fuel spent by driving
the trucks, assigning cost 0 to all actions except drive-truck.

Similarly, for many practical applications, a natural ob-
jective is to optimize the usage of one key consumable re-
source, e.g., fuel/energy minimization. In fact, two of the
IPC domains, Openstacks and Cybersec, which were shown
difficult for standard tiebreaking methods in the previous
section, both contain many zero-cost actions, and both are
based on industrial applications: Openstacks models pro-
duction planning (Fink and Voss 1999) and Cybersec mod-
els Behavioral Adversary Modeling System (Boddy et al.
2005, minimizing decryption, data transfer, etc.).

Therefore, in this paper, we modified various domains
into cost minimization domains with many zero-cost ac-
tions. Specifically, the domain is modified so that all ac-
tion schemas are assigned cost 0 except for 1 action schema
which consumes some key resource. The last word in the
names of these domains indicate the action which is assigned
non-zero cost, e.g., elevator-up is a modified elevator do-
main where the up action is assigned non-zero cost, and all
other actions have 0 cost. Most of the transportation-type
domains are modified to optimize energy usage (Logistics-

Coverages (# problems solved) Coverage (# problems solved), 10 runs (mean±sd) Wilcoxon p vs [h, rd, ro]
Domain [h, fifo] [h, lifo] [fifo] [lifo] [h, fd, ro] [h, ld, ro] [h, rd, ro] [rd, ro] [h, ro] [h, fd, ro] [h, ld, ro] [h, ro]

LMcut IPC (1104) 558 565 442 556 556.6±0.7 570.3±2.1 572.8±0.7 558.8±2.1 559.8±1.0 0.0 .01 0.0
airport(50) 27 26 18 26 26.2±0.4 26.2±0.4 26.2±0.4 21.0±0.0 26.0±0.0 1.0 1.0 .17

cybersec(19) 2 3 0 3 2.0±0.0 8.5±2.0 10.9±0.8 7.4±0.7 4.4±1.0 0.0 .01 0.0
logistics00(28) 20 20 16 18 20.0±0.0 20.0±0.0 20.0±0.0 20.0±0.0 20.0±0.0 1.0 1.0 1.0
miconic(150) 140 140 68 140 140.0±0.0 140.0±0.0 140.0±0.0 135.5±1.2 140.0±0.0 1.0 1.0 1.0

openstacks-opt11(20) 11 18 11 18 11.0±0.0 18.0±0.0 18.0±0.0 18.0±0.0 11.6±0.5 0.0 1.0 0.0
pipesworld-notankage(50) 15 14 13 13 14.4±0.5 14.6±0.5 14.7±0.5 14.3±0.5 14.9±0.3 0.2 .68 0.3

scanalyzer-opt11(20) 10 10 4 10 10.0±0.0 10.0±0.0 10.0±0.0 9.0±0.0 10.0±0.0 1.0 1.0 1.0
woodworking-opt11(20) 10 10 6 9 10.0±0.0 10.0±0.0 10.0±0.0 11.6±0.5 10.0±0.0 1.0 1.0 1.0
LMcut Zerocost(620) 256 279 212 281 257.4±2.0 286.6±7.1 294.2±2.3 279.9±3.9 264.9±1.8 0.0 .01 0.0

airport-fuel(20) 15 13 7 15 14.7±1.0 14.0±0.6 14.6±0.5 10.5±0.7 14.4±0.7 .59 .05 .58
driverlog-fuel(20) 8 8 7 8 8.0±0.0 7.7±0.5 8.0±0.0 8.0±0.0 8.0±0.0 1.0 .08 1.0
elevators-up(20) 7 13 7 13 7.0±0.0 9.4±0.7 10.7±1.1 8.3±0.6 7.3±0.5 0.0 .02 0.0

freecell-move(20) 4 19 4 19 4.0±0.0 19.7±0.5 17.2±0.6 16.7±1.0 5.0±0.4 0.0 0.0 0.0
miconic-up(30) 16 17 10 17 15.7±0.5 19.4±0.7 20.4±1.2 20.4±0.9 17.0±0.4 0.0 .03 0.0

mprime-succumb(35) 15 14 12 14 16.3±0.5 18.9±4.0 20.5±0.8 18.1±1.6 17.9±0.5 0.0 .15 0.0
pipesnt-pushstart(20) 8 8 6 7 8.0±0.0 8.8±1.3 9.8±0.4 9.7±0.5 8.5±0.5 0.0 0.1 0.0

pipesworld-pushend(20) 3 4 2 4 3.0±0.0 4.2±1.0 4.9±0.5 5.2±1.2 3.9±0.3 0.0 .09 0.0
scanalyzer-analyze(20) 9 9 3 9 9.8±0.9 9.4±0.5 9.2±0.4 7.3±1.0 9.1±0.3 .07 .37 .58

tpp-fuel(30) 8 11 7 11 7.5±0.5 11.0±0.0 11.0±0.0 11.0±0.0 8.1±0.3 0.0 1.0 0.0
woodworking-cut(20) 5 7 2 7 5.0±0.0 6.9±0.3 9.2±0.9 7.7±0.6 7.1±0.3 0.0 0.0 0.0
LMcut Total(1724) 814 844 654 837 814.0±2.3 856.9±8.5 867.0±2.1 838.7±4.9 824.7±2.1 0.0 .01 0.0
M&S IPC (1104) 479 488 451 481 478.8±0.4 484.8±0.4 484.0±0.0 481.4±1.4 486.4±0.8 .01 .02 .01

M&S Zerocost (620) 276 290 226 283 274.0±0.9 293.4±2.1 310.2±2.1 303.2±1.7 288.0±1.7 .01 .01 .01
M&S Total(1724) 755 778 677 764 752.8±0.7 778.2±1.9 794.2±2.1 784.6±2.1 774.4±1.2 .01 .01 .01

Table 1: Coverage comparison (# of instances solved in 5min, 2GB), bold=best. Zerocost domains are named as [original
name]-[name of nonzero action]. Due to space, we only show the domains whose maximum pairwise coverage difference
MaxDiff > 2. (We used the means of 10 runs for the randomized strategies.) Domains with MaxDiff ≤ 2 follows:
(1) MaxDiff = 0 (same coverages by all configuration and all runs): barman-opt11, floortile-opt11, grid, gripper, hanoi, parking-opt11, pegsol-

opt11, psr-small, rovers, sokoban-opt11, tpp, transport-opt11, grid-fuel, gripper-move, parking-movecc, psr-small-open, zenotravel-fuel.
(2) 0 < MaxDiff ≤ 1: depot, driverlog, elevators-opt11, freecell, mystery, parcprinter-opt11, pathways, pipesworld-tankage, storage, tidybot-opt11, visitall-

opt11, driverlog-fuel, floortile-ink, hiking-fuel, logistic00-fuel, nomystery-fuel, pathways-fuel, sokoban-pushgoal.
(3) 1 < MaxDiff ≤ 2: blocks, nomystery-opt11, pipesworld-notankage, zenotravel, depot-fuel, rovers-fuel, storage-lift, tidybot-motion.

fuel, elevator-up etc.), and assembly-type domains are mod-
ified to minimize resource usage (Woodworking-cut mini-
mizes wood usage, etc.). We did not include domains with
only a single action schema and standard domains which al-
ready had many zero-cost actions (these are already in the
results for standard IPC domains). We refer to these 28 new
domains as zerocost domains.

Figure 3 plots the size of the final plateau of the zerocost
domain instances. As expected, many of these zerocost do-
mains have large plateaus. Thus, in these cost-minimization
problems, the search strategy within plateaus, i.e., tiebreak-
ing, becomes very important.

6 Depth-Based Tiebreaking
In order to solve zerocost problems, the planner needs to per-
form an efficient knowledge-free search within a large, final
plateau. One useful notion which can be used to both un-
derstand and control the search in this situation is the depth
of a node, which represents the number of steps (edges in
the search space graph) from the entrance of the plateau.
Given a node n, if its current parent parent (n) is from the
other plateau, i.e., parent (n) has a different f -value, or dif-
ferent h-value when the first tiebreaking is present, then

depth (n) = 0. Nodes with depth (n) = 0 correspond to
the entrance of the plateau. If n and parent (n) are in the
same plateau i.e. share the same f and h, depth (n) is de-
fined as depth (parent (n)) + 1. Based on this simple notion
of depth, we propose three depth-based tiebreaking strate-
gies, where the nodes are inserted into buckets associated
with depths, and upon expansion, the buckets are chosen ac-
cording to some policy. “First depth” (fd), “last depth” (ld),
and “random depth” (rd) choose a bucket with the smallest
depth, the largest depth, and a depth randomly selected at
each expansion, respectively.

The effectiveness of each of these depth-based policies
depends on the problem instance. Within the plateau region,
all nodes have the same f and h values, and the goals can
be near or far from the entrance. In the former case, the
search should be focused around the entrance favoring the
smaller depths (fd), and the behavior in the plateau should be
much like breadth-first. In the latter case, the planner should
greedily explore the various area of the plateau by preferring
largest depth (ld), much like in depth-first. It may also be
possible for a goal to be at an intermediate depth, in which
case fd could take too much time to reach that depth, and ld
may greedily pass and miss that depth. By an adversary ar-

gument, rd, which selects a random depth and has no depth
bias would seem to be the safest policy.

Depth-based tiebreaking has no effect when used as a
second-level tirebreaking policy with a domain with positive
costs only and h-based first-level tiebreaking policy. This is
because most actions result in an updated h-value, so almost
all nodes have depth 0.

Tiebreaking within Depth Buckets Since there can be
multiple nodes within the same depth bucket, a further
tiebreaking criterion may be necessary to break ties among
them. We could, for example, apply lifo or fifo policies at this
level – note that [h, fd, fifo] and [h, ld, lifo] are equivalent to
[h, fifo] and [h, lifo], respectively.

However we use a Random Order (ro) policy, which ran-
domly selects an element from the depth bucket selected
by the depth-based tiebreaking. This is because the effec-
tiveness of the tiebreaking behavior within a bucket can be
affected by accidental biases, e.g., names/orders of action
schema in the PDDL domain definition (Vallati et al. 2015).
Thus, we avoid bias at this level of tiebreaking by using ro
and assess its expected/average performance.

6.1 Evaluating Depth-Based Tiebreaking
We evaluated three 3-level tiebreaking strategies. In addi-
tion to the 35 IPC benchmark domains with 1104 instances
used in the previous set of experiments, we used 28 zerocost
domains with 620 instances. For randomized strategies, we
show the coverage (mean ± sd) on 10 independent runs.

We compared [h, fd, ro], [h, ld, ro], and [h, rd, ro]. These
all use h as the first-level tiebreaking criterion, one of fd, ld,
rd as the depth-based 2nd-level tiebreaking criterion, and fi-
nally, ro as the 3rd-level criterion. Since these configurations
are randomized, we run each configuration with 10 different
random seeds. To see whether differences among the mean
coverages were statistically significant, we applied the non-
parametric Wilcoxon’s signed-rank test.

Table 1 shows the coverage (mean ± sd), along with
the rightmost columns showing the Wilcoxon test p val-
ues for [h, rd, ro] vs. 3 other strategies. In many domains,
the performance was significantly affected by 2nd-level
tiebreaking, and [h, rd, ro] dominated the others. Although
[h, ld, ro] and [h, rd, ro] performed similarly on most do-
mains, the performance of [h, rd, ro] in some domains are
notable (e.g., Cybersec, Woodworking-cut). The standard de-
viation of [h, rd, ro] coverage tends to be smaller than that of
[h, ld, ro], indicating that [h, rd, ro] is robust with respect to
random seeds. [h, fd, ro] is mostly dominated by [h, rd, ro]
and [h, ld, ro], except in Scanalyzer-analyze.

Depth-Based Tiebreaking Without Considering h In
Sec. 4, we showed that [lifo] tiebreaking (without consid-
ering h) is sufficient for the standard IPC benchmarks –
the performance of [lifo], [h, lifo], and [h, fifo] are compa-
rable. Table 1 shows that [rd, ro], which randomly selects
an element from a randomly selected depth-bucket, dom-
inates [h, fifo], and performs comparably to [h, lifo]. Al-
though [rd, ro] behaves in a less greedy/depth-first manner
than [lifo], it explores nodes with high depth sufficiently of-
ten so that even if lifo behavior (seeking nodes that are far

100

101

102

103

104

105

106

100 101 102

[h,lifo]
[h,fifo]
[h,rd,ro]

100

101

102

103

104

105

106

100 101 102 103 104 105

[h,lifo]
[h,fifo]
[h,rd,ro]

Figure 5: Number of nodes (y-axis) expanded per depth
(x-axis) in the final plateau for Openstacks p10 (left) and
Woodworking-cut p04 (right) with different tiebreakings.

from the plateau entrance) is required, [rd, ro] will eventu-
ally find the solution. Moreover, there are some domains
(pipesworld-pushend and woodworking-opt11) where a the
more randomized behavior of [rd, ro] is advantageous. Thus,
overall, [rd, ro] performs moderately well, and neither h nor
lifo-behavior is necessary in order to obtain performance
that is competitive with the standard tiebreaking strategies.

Is Depth-Based Tiebreaking Necessary? We have shown
that [h, rd, ro] performs well overall, but one might wonder
whether the power of this strategy really comes from depth-
based tiebreaking, or from randomness. Table 1 shows that
[h, ro] performs poorly, so clearly, random tiebreaking com-
bined with h-based tiebreaking is not sufficient. The reason
that [h, ro] performs so poorly is that if we select uniformly
from the bucket of all open nodes in the plateau, there is a
very strong bias for selecting a node with low depth, simply
because at any given point during the search in the plateau
region, more nodes closer to the plateau entrance (i.e., lower
depth) will have been generated. By randomly selecting a
depth bucket, [h, rd, ro] explicitly eliminates this bias for se-
lecting nodes for low depth.

Search Behavior Within a Plateau To understand the be-
havior of depth-based policies, we plotted the histogram of
the depths of search nodes opened by the most success-
ful depth-based strategy, [h, rd, ro], as well as the standard
[h, fifo], [h, lifo] strategies in the final plateau, plateau(f∗, 0)
until the solution is found. Although [h, fifo] and [h, lifo]
do not operate with an explicit notion of “depth”, they are
equivalent to [h, fd, fifo] and [h, ld, lifo], respectively, so we
recorded and plotted the depths according to [h, fd, fifo] and
[h, ld, lifo].

Figure 5 shows the result on Openstacks-opt11 p10 (left)
and Woodworking-cut p04 (right). In both instances, we
observed that the depth-first behavior of [h, lifo] results
in deeper search, missing the key branch at intermediate
depths. On the other hand, the breadth-first behavior of
[h, fifo] often gets stuck spending an excessive amount of
time searching around the plateau entrance. [h, rd, ro] is bal-
ancing the search at various depths, which results in success-
fully solving more problems within the time limit (Table 1).

Comparison With ε-Cost Transformation An alterna-
tive approach to addressing the large plateaus in zero-cost

Domain [h, fifo]/ε[h, lifo]/ε [h, fd, ro] [h, rd, ro]
LMcut Zerocost 261 259 257.4±2.0294.2±2.3
M&S Zerocost 282 282 274.0±0.9310.2±2.1

Table 2: Comparison of depth-based tiebreaking methods
vs. standard [h, fifo] and [h, lifo] methods applied to ε-cost-
transformed versions of the problem instances

domains is to eliminate plateaus by introducing artificial gra-
dients in the search space. For example, the cost of all zero-
cost actions can be replaced by a small ε � 1, where ε is
chosen such that the optimal cost for the result of this ε-cost
transformation (“ε-transformation”) is the same as the cost
of the optimal solution to the original domain with zero costs
when the ε-transformed costs are mapped back to 0.

We evaluated the [h, fifo]/ε and [h, lifo]/ε strategies,
which are the standard [h, fifo] and [h, lifo] tiebreaking
strategies applied to the ε-transformed version of the prob-
lems. Since Fast Downward only supports integer costs, we
implemented/simulated the transformation by multiplying
the non-zero costs by 106, and assigning cost 1 to zero-cost
actions – in effect, ε = 10−6. Table 2 shows that [h, fifo]
and [h, lifo] with ε-transformation perform comparably to
[h, fd, ro], but are outperformed by [h, rd, ro]. The similar-
ity in performance between ε-transformation and [h, fd, ro]
can be explained by the fact that OPEN is sorted according
to f(n)+k(n)ε, where k(n) is a number of zero-cost actions
in the path to node n, while expansion order of FirstDepth is
equivalent to f(n)+depth (n) ε. (depth (n) ≤ k(n) because
k(n) accounts zero-cost actions also in non-final plateaus).
One advantage of the ε-transformation is that it can be im-
plemented by transforming the input problem and does not
require implementation of depth-based buckets in the search
algorithm. On the other hand, there are two issues with the
ε-transformation: (1) ε must be chosen carefully – admissi-
bility is lost when k(n)ε ≈ 1, and (2) the number of possible
g and f values becomes very large, making it difficult to use
efficient O(1) array-based implementation of the OPEN list
and requiring the use of a heap-based O(log n) OPEN list.

7 Domain Configuration and Tiebreaking
Recently, Vallati et al. showed that the performances of satis-
ficing planners were significantly affected by PDDL domain
configurations, which include the name/ordering of actions,
propositions, and objects in the PDDL input file (2015).
They conjectured that performance variations caused by dif-
ferent domain configurations are due to the impact that
the naming/ordering of objects has on tiebreaking. In Fast
Downward, action names can affect search performance, be-
cause FD sorts the action schemas according to the dictio-
nary order of the schema names, which affects the order of
applicable ground actions, which in turn affects the node in-
sertion order into OPEN.

We tested the robustness of the standard [h, lifo] and
[h, fifo] strategies, as well as [h, rd, ro], with respect to bi-
ases introduced by domain configuration (action naming) in
the PDDL domain definition. We created 3 different sets of
domains in which the original names of action schema are
mangled into random strings. We ran each of the 3 strategies
on each set of mangled domains, three times each with dif-

Domain [h, fifo] [h, lifo]
[h, rd, ro]

(n: number of runs)
Mangled IPC 1 (1104) 556 564 571.7±0.9 (n = 3)
Mangled IPC 2 (1104) 557 568 571.3±0.9 (n = 3)
Mangled IPC 3 (1104) 557 568 573.0±1.6 (n = 3)
Original IPC (1104) 558 565 570.6±1.5 (n = 10)

Mangled Zerocost 1 (620) 256 277 288.7±3.7 (n = 3)
Mangled Zerocost 2 (620) 256 277 285.0±0.8 (n = 3)
Mangled Zerocost 3 (620) 256 279 286.7±0.9 (n = 3)
Original Zerocost (620) 256 279 287.2±2.4 (n = 10)

Table 3: Total coverages of [h, fifo], [h, lifo] and [h, rd, ro]
(with three seeds). Each row represents the original set of
domains or its three action-mangled variants. The effect of
action ordering is small enough for [h, rd, ro] to constantly
perform better than the traditional tiebreaking methods.

ferent random seeds, resulting in 9 runs per strategy (recall
that robustness wrto random seed was shown in Sec. 6.1.)

The results are shown in Table 3 (We also included the
original 10 runs from Table 1). We statistically analyzed the
results for [h, rd, ro] to see if any of the 4 sets of domains
significantly outperformed the others. Fligner-Killeen’s non-
parametric test could not reject the homogeneity of variances
(p = 0.75 for IPC, p = 0.26 for Zerocost), so we then ap-
plied the non-parametric Kruskal-Wallis test, which showed
that the mean differences were not significant (p = 0.28 for
IPC, p = 0.44 for Zerocost), i.e., action name mangling did
not significantly affect performance.

Thus, in contrast to the results for satisficing search by
(Vallati et al. 2015), the effect of action ordering seems to
be relatively weak for cost-optimal search using A∗. This
may be because compared to the satisficing, best-first search
algorithms evaluated in (Vallati et al. 2015), the behavior of
admissible search is more constrained.

8 Related Work
Previous work on escaping search space plateaus has fo-
cused on non-admissible search. DBFS (Imai and Kishimoto
2011) adds stochastic backtracking to Greedy Best First
Search (GBFS) to avoid being misdirected by the heuris-
tic function. Type based bucket (Xie et al. 2014) classifies
the plateau of GBFS according to the [g, h] pair and dis-
tributes the effort. Marvin (Coles and Smith 2007) learns
plateau-escaping macros from the Enhanced Hill Climbing
phase of the FF planner (Hoffmann and Nebel 2001), and
the use of these macros is inadmissible. Hoffmann gives
a detailed analysis of the structure of the search spaces of
satisficing planning (2005; 2011). (Benton et al. 2010) pro-
poses inadmissible technique for temporal planning where
short actions do not increase makespan. (Cushing, Benton,
and Kambhampati 2010) investigates “ε-cost traps”(ε =
min cost
max cost), showing that (non-admissibly) treating all actions
as unit cost sometimes finds an optimal plan quickly. (Wilt
and Ruml 2011) also analyzes inadmissible distance-to-go
estimates. To our knowledge, plateaus have not been previ-
ously investigated for cost-optimal planning with admissi-
ble search. Admissible and inadmissible search differ sig-
nificantly in how non-final plateaus (plateaus with f < f∗)
are treated: Inadmissible search can skip or escape plateaus

whenever possible, while admissible search cannot, unless it
is the final plateau (f = f∗, h = 0) and a solution is found.

The PLUSONE cost-type (or distance-to-go) is a non-
admissible search technique in the Fast Downward/LAMA
planner (Richter and Westphal 2010) which increases all
action costs by 1. This technique explicitly targeted zero-
cost actions, and resulted in significantly better performance
in the IPC-6 satisficing track (Richter and Westphal 2010,
p.137, Sec. 3.3.2). Unlike PLUSONE, depth-based tiebreak-
ing is admissible. Also, unlike PLUSONE, depth-based
tiebreaking does not necessarily favor smaller depth over
larger depth. LAMA prefers smaller cost (including the in-
creased cost), which biases the search toward nodes with
fewer zero-cost actions on their path. This bias is similar to
the [h, fd, ro] policy, the worst performer among all depth-
variants in our experiments (Table 1). The best depth-based
methods are [h, ld, ro] and [h, rd, ro], which do not prefer
smaller depth.

9 Conclusion
In this paper, we evaluated standard tiebreaking strategies
for A∗. We showed that contrary to conventional wisdom,
tiebreaking based on the heuristic value is not necessary to
achieve good performance, and proposed a new framework
for defining tiebreaking policies based on depth. We showed
that a depth-based, randomized strategy [h, rd, ro], which
uses the heuristic value, but explicitly avoids depth and or-
dering biases present in previous methods, significantly out-
performs previous strategies on domains with zero-cost ac-
tions, including practical application domains with resource
optimization objectives in the IPC benchmarks. The pro-
posed approach is highly effective on domains where zero-
cost actions create large plateau regions where all nodes
have the same f and h costs and the heuristic function pro-
vides no useful guidance.

References
Benton, J.; Talamadupula, K.; Eyerich, P.; Mattmüller, R.; and
Kambhampati, S. 2010. G-Value Plateaus: A Challenge for
Planning. In Proc. ICAPS, 259–262.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of Action Generation for Cyber Security Using Classi-
cal Planning. In Proc. ICAPS, 12–21.
Burns, E. A.; Hatem, M.; Leighton, M. J.; and Ruml, W. 2012.
Implementing Fast Heuristic Search Code. In Proc. Symposium
on Combinatorial Search.
Coles, A., and Smith, A. 2007. Marvin: A Heuristic Search
Planner with Online Macro-Action Learning. J. Artif. Intell.
Res.(JAIR) 28:119–156.
Cushing, W.; Benton, J.; and Kambhampati, S. 2010. Cost
Based Search Considered Harmful. In Proc. Symposium on
Combinatorial Search.
Fink, A., and Voss, S. 1999. Applications of Modern Heuristic
Search Methods to Pattern Sequencing Problems. Computers
& Operations Research 26(1):17–34.
Hansen, E. A., and Zhou, R. 2007. Anytime Heuristic Search.
J. Artif. Intell. Res.(JAIR) 28:267–297.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cybernetics
4(2):100–107.
Helmert, M., and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. ICAPS.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-shrink abstraction: A method for generating lower
bounds in factored state spaces. J. ACM 61(3):16:1–16:63.
Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res.(JAIR) 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation through Heuristic Search. J. Artif. Intell.
Res.(JAIR) 14:253–302.
Hoffmann, J. 2005. Where ’Ignoring Delete Lists’ Works: Lo-
cal Search Topology in Planning Benchmarks. J. Artif. Intell.
Res.(JAIR) 24:685–758.
Hoffmann, J. 2011. Analyzing Search Topology Without Run-
ning Any Search: On the Connection Between Causal Graphs
and h+. J. Artif. Intell. Res.(JAIR) 41(2):155–229.
Holte, R. C. 2010. Common Misconceptions Concern-
ing Heuristic Search. In Proc. Symposium on Combinatorial
Search.
Imai, T., and Kishimoto, A. 2011. A Novel Technique for
Avoiding Plateaus of Greedy Best-First Search in Satisficing
Planning. In Proc. Symposium on Combinatorial Search.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Optimal
Admissible Tree Search. Artificial Intelligence 27(1):97–109.
Nilsson, N. 1971. Problem Solving Methods in Artificial Intel-
ligence. McGraw-Hill.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley Pub. Co., Inc.,
Reading, MA.
Richter, S., and Westphal, M. 2010. The LAMA Planner: Guid-
ing Cost-Based Anytime Planning with Landmarks. J. Artif.
Intell. Res.(JAIR) 39(1):127–177.
Röger, G., and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
Proc. ICAPS, 246–249.
Vallati, M.; Hutter, F.; Chrpa, L.; and McCluskey, T. L. 2015.
On the Effective Configuration of Planning Domain Models. In
Proc. IJCAI.
Wilt, C. M., and Ruml, W. 2011. Cost-Based Heuristic Search
is Sensitive to the Ratio of Operator Costs. In Proc. Symposium
on Combinatorial Search.
Xie, F.; Müller, M.; Holte, R.; and Imai, T. 2014. Type-Based
Exploration with Multiple Search Queues for Satisficing Plan-
ning. In Proc. AAAI, 2395–2402.

