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Abstract The acquisition of science data in space appli-
cations is shifting from teleoperated data collection to an
automated onboard analysis, resulting in improved data qual-
ity, as well as improved usage of limited resources such
as onboard memory, CPU, and communications bandwidth.
Science instruments onboard a modern deep-space spacecraft
can acquire much more data that can be downloaded to Earth,
given the limited communication bandwidth. Onboard data
analysis offers a means of compressing the huge amounts of
data collected and downloading only the most valuable sub-
set of the collected data. In this paper, we describe algorithms
for detecting dust devils and clouds onboard Mars rovers, and
summarize the results. These algorithms achieve the accuracy
required by planetary scientists, as well as the runtime, CPU,
memory, and bandwidth constraints set by the engineering
mission parameters. The detectors have been uploaded to
the Mars Exploration Rovers, and currently are operational.
These detectors are the first onboard science analysis pro-
cesses on Mars.
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1 Introduction

The introduction of onboard automated image processing in
space applications is changing the way rover and lander mis-
sions are operated. For the Mars Exploration Rovers (MER)
mission, process automation has already proved valuable in
several critical engineering tasks. For example, during the
Entry, Descent and Landing (EDL) stage of the spacecrafts
carrying the MER rovers Spirit and Opportunity the auto-
mated image analysis program DIMES allowed the space-
crafts to land in pre-specified landing ellipses, directing the
firing of rockets to reduce the uncertainties in horizontal cap-
sule velocity caused by winds [4,5]. Similarly, the rovers
can traverse dozens of meters at a time using GESTALT, an
automated hazard avoidance program that uses stereo vision
to steer the rover away from rocks and steep hills. It also
can keep track of its position using onboard visual odome-
try, more accurately than wheel odometry which is affected
by slippage [6]. In this paper, we present an application
that extends such automation from the strictly engineering
domain to the science domain. The goal is to automatically
perform processing onboard that allows the rover to select or
prioritize science data according to its science value. Several
previous systems have demonstrated onboard science analy-
sis for rovers in testbeds and field testing [3,13,17,24,27].

In this paper, we describe two algorithms called the Dust
Devil and Cloud Symbolic Perception of Objects for Extrac-
tion and Recognition programs (SPOTTERs), developed
from scratch, with no legacy code except for the use of the Sky
SPOTTER, that we previously developed for the Onboard
Autonomous Science Investigation System (OASIS) [2]. For
simplicity, we will refer to the dust devil and Cloud SPOT-
TERs simply as extractors or detectors. The programs were
tested, optimized, integrated into the MER flight software and
are currently operational, acquiring science data on Mars.
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Recent explorations on the Martian surface have revealed
an environment far more dynamic than previously believed.
In particular, the atmosphere of Mars is very dynamic and
clouds, winds and dust devils are events useful to under-
stand it. In the current environment (in geological terms), dust
storms are the dominant mechanism for altering the surface
of Mars, and are likely to have occurred for as long as Mars
has had a dynamic atmosphere and a supply of dust size par-
ticles on the surface. Windblown sand and dust erodes rocks
and landforms, and is deposited as sand dunes and mantles
that can be hundreds of meters thick. Martian clouds, which
provide a picture of the state of the atmosphere, are a major
indicator of the seasonal characteristics of the wind. Under-
standing the physics and geology of windblown particles is
essential for unraveling the complex history of the Martian
surface. Observing active dust storms and dust devils from the
surface and from orbit and tracking their evolution enables
this understanding.

Martian clouds and dust devils are high science value
events have been the subject of considerable study. Both dust
devil and cloud detection campaigns (periodically scheduled
imaging sessions) have been conducted, but in general, they
are rare events. For example, only around 10–25% of the
images collected during cloud campaigns have clouds in
them. Prior campaigns have involved collecting images at
fixed times for return to Earth, resulting in an inefficient use
of downlink bandwidth as the majority of images do not con-
tain the phenomena of interest (dust devils or clouds).

Dust devils and dust devil tracks have been observed in
orbital imagery of Mars from the Mars Global Surveyor,
Mars Odyssey, and Mars Express spacecrafts. Dust devils
were also detected in Mars Pathfinder color imagery [12,23].
Even before the landing of Spirit in Gusev crater, there was
speculation that active dust devils would be seen from the
rover, based on orbiter images of the landing site that showed
inferred tracks left by dust devils [14]. This speculation was
confirmed, although many of MER dust devils are only visi-
ble in the images after applying contrast stretching to make
the dust devil feature apparent. To establish the presence of
a dust devil in a sequence, the scientists used tools that rated
the likelihood of the sequence to contain dust devils, without
identifying them by location; no high level automated ground
measurement aid existed. Once the images were flagged, the
images were inspected manually.

Our approach to automated dust devil detection is to use
motion detection based on background subtraction. This
approach is suitable given the conditions under which our
algorithms will be operating, i.e., stationary-camera surveil-
lance with dust devils as the only feature in the scene that
can have significant motion on the order of seconds. Motion
detection based on basic background subtraction techniques
are extensions to frame differencing, i.e., the subtraction
of two frames, one of which, ideally, is an image of the

background of the scene. These methods include frame
difference, averages, running averages and median-based
background subtractors. Although these methods suffer from
the presence of ghosts (residuals of objects in motion in one
image detectable in other images of the set used for the anal-
ysis) and have problems dealing with shadows, they are very
fast, and are therefore frequently used for real-time applica-
tions (e.g., traffic monitoring [7], congestion detection in train
stations [21]). More sophisticated (and more computationally
expensive) background subtraction techniques such as eigen-
backgrounds, mean-shift and mixtures-of-gaussians, are able
to reduce the effect of shadows and ghosts to various degrees
(Cucchiara et al. provide a survey of papers in many of these
techniques [10]).

The clouds that form on Mars are thin and wispy. Fluffy
cumulus-like clouds do not form. Cloud formation on Mars is
much more localized than on Earth, where clouds are found
around the entire globe. On Mars, the majority of the clouds
occur around the equatorial zone. Considerably more study
will be required to understand the formation and dissipation
of clouds in the Martian atmosphere. As with the dust devils,
cloud detection in Martian data taken from the surface has
previously been done manually, typically employing contrast
stretching. The study of clouds in the atmosphere has led to
regular cloud campaigns since the beginning of the MER
mission. Our approach to automating the detection of clouds
is to first identify the sky (equivalently, the skyline) and then
determine if there are clouds in the region segmented as sky.
In contrast to the dust devil detection, this algorithm operates
on individual images. The time frame over which the clouds
may change significantly is too long to require the rover to
remain motionless on a regular basis, which would be neces-
sary for effective application of image differencing or other
motion-detection technique.

Although there is a large body of work in the remote sens-
ing community on automatic detection of clouds using satel-
lite imagery, detection of clouds from the ground has not been
widely investigated. There has been extensive work, how-
ever, on horizon and sky detection, as it is commonly used
for rover localization and mapping, e.g., [25,26]. We review
two related works on detecting the horizon in the context of
planetary rovers.

Cozman et al. used a skyline detector for Carnegie-
Mellon University’s Viper system, a teleoperation system
aimed at providing a user with easy to understand infor-
mation for facilitating effective rover driving [9]. This sky-
line detector operates by analyzing the columns in an image,
descending down each column, marking pixels as belonging
to the sky until a threshold on the Gaussian smoothed image
is crossed. This algorithm was designed to be a tool for tele-
operation, aiding the human operators by giving them an
initial horizon delineation which could then be easily refined
manually by the operator. The algorithm was not developed
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as part of an automatic process, and no claim is made that
the algorithm as initially proposed, would be suitable for an
autonomous application. In particular, this system is geared
toward speed over extremely high accuracy as it is part of an
interactive system. As such, the skyline detector is prone to
failures when the smoothed gradient is not sufficiently clean.
Specifically, the authors note that it can fail in the presence
of clouds. For our application, the sky detector must oper-
ate fully automatically and, clearly, must be robust to the
presence of clouds.

A second important work on sky detection aimed at plan-
etary robotics was that of Gullick et al. [17], and later further
applied by Roush et al. [24]. This work was conducted at the
NASA Ames Research Center, where the horizon detector
was part of an image understanding framework for onboard
autonomous science. This sky detector uses active contours,
in which a sequence of particles, initially located at the top of
the image, arrive at an equilibrium state between (a) a grav-
ity-like force that pushes them downwards, (b) an upward
buoyant force function of the edges of the image that pushes
them upwards and, (c) tension between the neighbors of each
particle. This sky detector uses three strong assumptions: (a)
there is only one horizon pixel per column, (b) the camera
roll is small and, (c) the horizon’s slope has a predefined
limit of 45◦. In practice, these assumptions hold in a large
number of cases; however, as the vantage point of the cam-
era is lowered, nearby rocks become part of the skyline and
the first assumption breaks. This is particularly important for
our case, where the rover is at a low vantage point, frequently
looking at a very ragged horizon, e.g., the horizon seen from
the rover while inside a crater is almost exclusively made
of nearby rocks, resulting in a skyline that may violate the
first assumption in multiple places. The situation of having
a rover inside a crater is not only possible but desirable, as
the rover has access to geological layers exposed inside the
crater, e.g., Spirit has spent many sols inside craters.

Another area that has a strong interest in rapid and reli-
able horizon detection is the field of Unmanned Air Vehicles
[11]. In this domain, the horizon detector for UAVs can take
advantage of the high altitude of the vehicle and approximate
the horizon to be a straight line, turning the detection prob-
lem into a line-fitting problem using as constraints statistical
features of the sky and the ground. In general, this work is not
applicable to the problem of detecting the horizon for plan-
etary robotics where a detailed skyline is required, since the
straight-line assumption does not hold. For example, in the
case of Spirit, the scenes are rocky and the horizon is usually
fractured; in the case of Opportunity, the scenes are sandy
with a horizon following the curves of dunes, but seldom
flat.

The algorithms presented in this paper represent a prac-
tical application of robust, well-understood computer vision
techniques in a highly constrained computing environment

with real-time execution requirements and limited CPU and
memory resources. Despite the variety of possible scenes
and environmental conditions and the relative simplicity of
the algorithms, the detectors achieve the accuracies desired
by the scientists on the team without requiring case-by-case
tuning.

Autonomous, onboard detection of clouds and dust dev-
ils enables a significant improvement to the previous oper-
ational scenario for planetary science, as well as enabling
entirely new operational scenarios. Scientists have tradition-
ally relied on a process where large amounts of data are col-
lected onboard and sifted for valuable science data on the
ground. Previously, in order to increase the amount of valu-
able science data products, it was necessary to increase the
amount of data that was collected and downloaded to the
ground. By shifting the analysis and filtering of the data from
the ground to the rover, the autonomous detectors make pos-
sible to increase the amount of valuable science data products
without increasing the volume of downloaded data. In addi-
tion, because of the necessity of downloading large amounts
of data in order to perform detection on the ground, cur-
rent operations rely on imaging campaigns that are targeted
to times when events are likely to occur. Detecting rare or
unexpected events (i.e., discovery) is impractical under the
traditional operational regime, since it would require vast
amounts of data to be transmitted, much of which would
not contain the sought events. In contrast, with autonomous,
onboard detection, it becomes possible to frequently collect
and analyze data onboard, sending only the pertinent data
back to the ground, thus enabling the discovery of rare and
unexpected phenomena.

In this paper, we discuss the operational scenarios under
which the algorithms are designed to be used and then
describe the dust devil and cloud detection algorithms. We
then provide results of performance testing for detection
accuracy, CPU and memory usage, and rates of compression
achieved.

2 Current and future scenarios

Martian dust devils and clouds are dynamic events that pro-
vide direct and indirect information about the Mars atmo-
sphere [1,16,20]. Scientists wish to collect as much data
as possible on these events to better understand them and
the role they play in Martian weather. Currently, due to the
restricted number of images that can be transmitted to Earth,
campaigns to capture the events using the MER cameras
are scheduled for times when the events are expected to
occur. This allows the rovers to perform a documentation
and verification task but not one of exploration or discov-
ery. In the case of clouds, sequences of images of the Mar-
tian sky are taken at specific times and transmitted to Earth
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with the expectation that some of them may have captured
the phenomena. Presently, with a current success rate of
imaging clouds between 10% and 25% of the time, the cloud
campaigns are expensive in terms of bandwidth and rover
resources. To improve the use of bandwidth, the scientists
may download a thumbnail of the full resolution image, prior
to deciding to download the actual image. Thumbnails are
8-bit 64×64-pixel (i.e., 4Kb) images that provide a rough
summary of the actual image. However, for the case where
the images are being searched for clouds, the thumbnails
are not useful unless the image has a very evident cloud i.e.,
wispy and soft clouds most likely would be missed. In Fig. 1a
we can see the thumbnail of an image that contains an evi-
dent cloud. In the case of dust devils, a campaign consists of
acquiring a sequence of around 20 frames. The first, middle
and last images of the set are sent to Earth, at high resolution,
and based on those, a decision for the download or deletion of
the full set is made. Thus, dust devils present in the sequence
that fail to appear in one of the three downloaded frames
are lost. Likewise, the full sequence is downloaded at a high
bandwidth cost, despite the fact that the dust devil might have
appeared in only a few of the frames. Again, the thumbnails
are not useful for resolving the majority of dust devils which
are medium-size, small or faint.

For the future scenario, the dust devil and the cloud detec-
tors were designed to improve the quality of the science
acquisition of these events, under the most general of con-
ditions. The detectors were designed for MER, but the soft-
ware and algorithms are applicable to any acquired surface
imagery. Efforts are in progress to deploy the software to sev-
eral future planned and proposed surface missions to Mars.
Both detectors use gray-scale imagery (as opposed to color
or multi-spectral) so they can use imagery from the pano-
ramic, navigation or hazard cameras of the rovers. The cloud
detector determines whether a single image contains clouds.
If it does not, the image is deleted; otherwise, the program
creates a binary thumbnail that shows the skyline and the
detections. These binary thumbnails, in contrast to the stan-
dard thumbnails available without the detectors, highlight
only the detected clouds, as shown in Fig. 1 b. The binary
thumbnails have a resolution of 64×64 pixels and a depth of
1 bit for a size of 512 bytes so they can be downloaded with-
out any appreciable cost. The scientists can either download
the binary thumbnail to have additional information about
the image or directly download the high-resolution image,
which has already been deemed by the detector to have a
high probability of containing a cloud.

For dust devil detection, we developed two operation
modes. In the first mode, called all-in-one, we detect dust
devils in a sequence of 4–8 images, all stored in memory
at the same time. If a dust devil is present, a set of binary
thumbnails that summarizes the changes in the images is
prepared. The scientists can download the binary thumbnails

Fig. 1 a Standard and b binary thumbnails of an evident cloud

to have additional information about the sequence or directly
download the images, which have already been deemed by
the detector to have a high probability of containing a dust
devil in at least one of the frames. In the second mode, called
feed, we process large image sequences by having in mem-
ory one image at a time, i.e., change detection is carried out
updating history records. In this case, individual frames are
tagged as containing a dust devil or not and can be down-
loaded individually. As before, each full resolution image is
accompanied by a binary thumbnail that can be downloaded
to verify the contents of the full resolution image or to priori-
tize its download. Having discussed the operational scenarios
under which the detectors will be run, we now describe the
detection algorithms.

3 Image conditioning

The first step for both dust devil and cloud detection is to con-
dition the images. The image conditioning operations per-
formed are: border cropping, a single-step image filtering,
minimization and bit-depth reduction, and noise estimation,
as shown in Fig. 2. The first conditioning operation, border
cropping, eliminates the effects introduced by the frame grab-
ber and ensures that they do not affect the image statistics.
While the size of the border to crop is a parameter, a typical
value is five pixels per side. Border cropping is also used
to restrict detections to a portion of the image. For example,
dust devils detection is typically restricted to the top 256 rows
of the full resolution 1024×1024 pixels image.

The second conditioning operation simultaneously low-
pass filters the image, reduces its size and reduces its bit
depth. Its net effect on the algorithm it to reduce both exe-
cution time and image noise. This is the most expensive step
of both detectors, taking between 20 and 70% of the total
execution time (depending on the reduction factor), and thus
we will describe it in some detail.

MER images have a native resolution of 1024 × 1024
pixels, stored in 2 bytes per pixel to accommodate a depth
of 12 bits per pixel [22]. The onboard processor, a 20 MHz
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Fig. 2 Conditioning process of cloud and dust devil campaign images

RAD6000, is not fast enough to permit an analysis of the
full resolution image in a reasonable amount of time (under
30 s). Our solution is to analyze the image at lower resolu-
tions. This approach is used by other automated processes
onboard, including hazard avoidance.

Pixels of the minimized image are obtained as follows.
The bit-depth resolution of non-overlapping windows of the
border-cropped images is reduced from 12 to 8 using a lin-
ear rescaling, i.e., the min–max range of the original image
is remapped onto the 0–255 range of the second image.
The results of low-pass filtering these windows are used
as the new pixels. Although the type of low-pass filter can
be set to either a mean filter or a median filter (or even
removed completely, reducing the operation to one of sub-
sampling), in practice we use the median filter almost exclu-
sively. Although more computationally expensive than a
mean filter, the median filter is necessary to reduce the salt-
and-pepper type image noise that can cause false identifi-
cations of features, in particular for the image differencing
approach used for dust devil detection. The width, k, of the
k × k median filter window is a selectable parameter, where
3 ≤ k ≤ 7.

The median filter was implemented using a counting sort,
taking advantage of the fact that the image pixels have been
reduced to a length of 1-byte. The algorithm employs a bin-
ning array, T , of length 256. For each pixel in the filter win-
dow, A, the count in the bin corresponding to the pixel value
is incremented. The median is the index for which the cumu-
lative bin sum is equal to or larger than half the number of
pixels in the filter window. On exit, the binning array is reini-
tialized to zero, to prepare it for the next call to the routine.
The pseudo-code of the algorithm is:

uchar- median (A(1 : len), T (0 : 255))

1 sum ← 0, min← 255, max ← 0
2 for i ← 1 to len
3 T [A[i]] ← T [A[i]] + 1
4 if (A[i] < min) min← A[i]
5 else if (A[i] > max) max ← A[i]
6 for i ← min to max
7 sum ← sum + T [i]
8 if (sum ≥ len/2) median← i; break
9 T [i] ← 0
10 for j ← i to max
11 T [ j] ← 0
12 return median;

This implementation of the median filter runs in time linear
in the sum of the lengths of the input array A and the dis-
tance between the minimum and maximum values of input
array D. In our case, where the window size varies from 3 to
7, the length of the input array A varies between 9 and 49.
The distance D will depend on the image, both on its noise
and its texture. The liner median filter has low overhead in
terms of both memory and computations, but its benefits may
not be apparent for very small windows. In our experiments,
this implementation was comparable in speed to a median
filter using an insertion sort for windows of size 5 × 5. For
smaller size windows, the median filter based on the inser-
tion sort was slightly faster than the linear median, but for
larger windows, the linear median filter was substantially
faster.

This algorithm is appropriate for our application because
the size of the binning array is small (256 elements). Our
experiments showed that it outperformed median filter imple-
mentations with sorting routines based on comparisons. How-
ever, because the performance depends on the length of the
binning array, the performance degrades significantly if the
elements to be filtered require more bits to represent. A sec-
ond reason to use this type of filter is that, in our application,
consecutive calls to the filter do not share values and thus,
we cannot make use of partially sorted arrays. The output
of each filtered window of the original image yields a single
pixel in the minimized image and since the windows do not
overlap, there is no history or shared information that can
be exploited. The third reason is that the filter must support
input arrays of various sizes, i.e., the size of A is defined by
the minimization factor k. Hence, we did not use efficient
median filter implementations that exploit specific sizes of
the filter window.

The second goal of image minimization is to increase the
signal-to-noise ratio (SNR) of the minimized image as com-
pared to that of the original image. Taking a mean filter as
a lower bound for the median filter, we have a reduction in
the standard deviation of the noise of the order of 1/k. Fur-
thermore, although the median filter is more expensive than
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Fig. 3 Noise estimation
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the mean filter, it eliminates (for all practical purposes) the
effects of the dead pixels of the sensor on the minimized
image.

The last step of the image conditioning shared by the dust
devil and cloud detectors is the estimation of the variance of
the noise of the minimized image. This will be used as a con-
fidence value to bias the detection thresholds. In all cases, it
is estimated using a difference of Laplacians [18] convolv-
ing the minimized image with the kernel shown in Fig. 3. The
selection of this method to estimate the noise variance was
also motivated by its speed.

4 The dust devil SPOTTER

All dust devil and clouds campaigns are carried out while
the rover and camera are not moving. In this static scene
case, the two common methods for detecting dust devils
are the comparison of two or more spectral bands of the
scene (particularly using red and blue ratios) and the detec-
tion of change in a sequence. We decided to base the dust
devil detector on change detection in gray-scale sequences
so that it could be applied to panoramic, navigation and haz-
ard camera imagery; the spectral method could have been
used only with imagery from the panoramic cameras (the
only ones equipped with a filter wheel). In theory, detect-
ing change in the scene is not equal to detecting dust devils
as Martian clouds also have motion. In practice, if image
noise can be accounted for, the vast majority of hits of a
change detector in a static Martian scene are caused by dust
devils.

We based our change detector on background subtrac-
tion because of its speed. The computational requirements
eliminate the use of optical flow or other more sophisti-
cated techniques; furthermore, given that the scene is sta-
tic, they are unnecessary. Within the confines of background
subtraction, the requirements favor the basic methods that
use frame difference, averages, running averages and medi-
ans. We selected the fastest possible methods that allowed
us to obtain the hit-to-miss ratios required by the scientists
in the team. Since the events tend to be faint and difficult to
detect, the hit-to-miss ratios are strongly correlated with the
handling of the image noise. For the following analysis, we
will approximate the noise of a pixel by an additive noise ε

drawn from a random Gaussian zero-mean distribution with
a standard deviation σ , and regard the multiplicative noise

component of the pixel as negligible. Subindices indicate the
frame of the sequence associated with the variable.

4.1 Frame difference

Detecting changes between two images is largely reduced to
subtracting them and thresholding the result. Consider the
effects of frame differencing on a single pixel (x, y). Let us
assume that there was no motion in the scene in image n−1,
i.e.,

In−1(x, y) = µ+ εn−1 (1)

where µ, the mean of the pixel, is the expected value of the
pixel under noiseless conditions. Let us further assume that
there is a change in the scene in image n (e.g., a dust devil
passing by) that changes the value of the pixel by δ, i.e.,

In(x, y) = µ+ δ + εn (2)

Then,

In(x, y)− In−1(x, y) = δ + (εn − εn−1) (3)

Since the noise components εi are independent samples, the
variance of their difference is the sum of their variances, i.e.,
the standard deviation of the difference is

√
2σ . Defining

the SNR of the pixel as the ratio of its mean to its standard
deviation we have

SNR f d = δ√
2σ

(4)

If we know a priori that the moving objects have a high con-
trast (e.g., a bright dust devil moving over a dark Martian
scene), then the difference of frames produces a difference
in intensity that can be thresholded with confidence very rap-
idly. However, the method fails for the detection of faint dust
devils, where the magnitude of the changes is closer to the
noise of the image, as thresholding frequently will incor-
rectly classify image noise as change (false positive), and/or
classify actual change as noise (false negative). Since most
of the dust devils that have been found on Mars are faint and
can only be observed by a person when the sequence is ani-
mated (usually requiring equalization or other remapping)
the threshold cannot, in general, be selected reliably using
the frame difference method.

4.2 Difference of average and frames

The detection of faint dust devils requires a better SNR than
that provided by the frame difference method. A better
method is that of acquiring a low-noise background image
through temporal averaging and subtracting it from the image
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that we want to analyze. For example, assume that the average
of a pixel over n − 1 images of a static background is

An−1(x, y) = 1

n − 1

n−1∑

j=1

I j (x, y) (5)

which has a mean µ and a standard deviation σ/
√

n − 1.
Thus, if pixel In(x, y) has a change δ, we have

A1(x, y) = In(x, y)− An−1(x, y) (6)

= (µ+ δ + εn)− 1

n − 1

n−1∑

j=1

(µ+ ε j ) (7)

which has a mean δ. Since the noise components of An−1

and In are independent, then the standard deviation of their
difference is the sum of their variances, i.e.,

σA1 = ((σ/
√

n − 1)2 + σ 2)
1
2 (8)

= σ
√

n√
n − 1

(9)

so the SNR ratio of the difference is

SNRA1 =
√

n − 1√
n

δ

σ
(10)

The SNR of the difference of the average and frames reduces
to that of the frame difference in Eq. (4) for n = 2 but for n
large it tends to

SNRA1|n→∞ = δ

σ
(11)

with a gain of
√

2 over the frame difference method, i.e., a
maximum gain of a 41.42% as n increases.

The added benefit of increasing n, the number of frames
in the average, is inversely proportional to n. The relative
gain of differencing a frame from an average over that of
differencing only two frames is

SNRA1

SNRd
= √2

√
n − 1

n
(12)

A second interesting figure is the value of n needed to achieve
a sizeable percentage of the maximum possible gain in SNR
of
√

2, i.e.,

gain = SNRA1 − SNRd

SNRA1|n→∞ − SNRd
100% (13)

=
√

2(n − 1)−√n√
2n −√n

100% (14)

As expected, both Eqs. (12) and (13) are an exclusive
function of n, independent of the standard deviation of the

Table 1 Relative increase in gain of difference of average and frames
with respect to frame difference and percentage of maximum improve-
ment of difference of average and frames over frame difference for a
given number of images n use in the average

n SNRA1/SNRd Gain %

2 1.000 0.0

3 1.155 37.5

4 1.225 54.2

5 1.264 63.8

6 1.291 70.3

7 1.309 74.5

8 1.323 78.4

9 1.333 80.6

10 1.342 82.5

20 1.378 91.6

50 1.400 96.6

100 1.407 98.2

distribution σ . These figures are tabulated for various values
of n in Table 1.

The rover has the constraint of having only ten image
buffers; sequences larger that ten images require the com-
pression and storage of an image (or its deletion) before a
new one can be captured. Thus, for the all-in-one mode, ten
images is the absolute maximum sequence length that we can
have (larger sequences require a flushing of buffers, making
the images unavailable for onboard processing). Still, accord-
ing to Table 1 this is a perfectly reasonable value as using 4–8
images in the average already provides from 50 to 80% of
the maximum possible benefit over frame difference to be
gained using averages.

The difference of averages and frames has an asymmetry
in that it assumes that the average image An−1 is composed
of images of a static scene. This is a simple assumption in
surveillance tasks where the camera can survey the scene for
a long period of time and acquire a good estimate of the back-
ground with no foreground objects. However, in our applica-
tion, a sequence of 4–8 frames is all that we have available
and we do not know which frames do not contain changes.
Thus, we restore the symmetry of a sequence of n frames by
finding the changes in image Ii using the difference between
An , the average of the n images of the sequence, and An,i ,
the average of the n−1 images of the sequence that excludes
Ii , i.e.,

An − An,i = 1

n

n∑

j=1

I j − 1

n − 1

n∑

j=1, j �=i

I j (15)

In practice, An,i is calculated as an update of An :

An,i = n An − Ii

n − 1
(16)
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Since An and An,i share terms, they cannot be considered
independent variables and thus, it is not easy to derive a closed
form expression for the SNR of their difference. However, we
have verified experimentally that it has the comparable limits
and gains to those of the standard differencing of averages and
frames. The feed mode is treated in the same manner, replac-
ing the averages with running averages, usually of length
n = 6. The use of background subtraction based on average
and running averages were sufficient to satisfy the hit-to-miss
requirements, so no further methods were analyzed. In Fig. 4
we show the difference of averages for a frame of a 7-image
sequence, stretched between 0 and 255 for display purposes.
The main dust devil of this image, on the right, appears prom-
inently, while ghosts from other frames are apparent on the
top left of the image.

Once we have performed the background subtraction, we
proceed with the thresholding. Since noise is a function of
parameters over which we have no control, such as time of
day, orientation of camera with respect to the sun, etc., a
fixed threshold is bound to perform correctly only under a
narrow set of conditions. In Fig. 5, we present the histogram
equalization of the difference of averages shown in Fig. 4,
which shows that the local noise (in a small neighborhood
of a 3 × 3 pixel size) of the image has fairly homogeneous
statistics except at the location of the dust devils, ghosts and
the horizon line. We take advantage of this by estimating the
variance of the local noise of the difference of averages image
and then biasing the detection threshold as follows:

thresdd = k1

(
1+ 1

k2σln
2

)
(17)

where k1 is the unbiased threshold under noiseless conditions
and k2 defines the influence of the local noise variance on the
final threshold. We use a value of k1 = 14, found experi-
mentally; this figure gives an idea of the narrow set of gray-
scale values that is used to discriminate between a dust devil
and background noise. Higher noise variances, that occur at
locations where the estimate of the noise variance breaks (at
edges and textured foreground objects) indicate the presence
of a dust devil so we lower the threshold to reduce false nega-
tives; lower noise variances indicate areas of the image where
there were no changes so we increase the threshold to avoid
false positives. In essence, we are using the variance of the
noise of the difference of averages as a second indicator of
the presence of foreground objects. Since noise is out of our
control, this indicator is less reliable than the difference of
averages and thus, simply biases the main threshold. Finally,
since the image of a dust devil is bounded within a small area
of the image, we use a blob filter to make sure that there are
more than a given number of detections within a local region.
The threshold criteria for the blob filter is to preserve pixels

Fig. 4 Difference of averages for a frame of the 7-image sequence

Fig. 5 Histogram equalization of the difference of averages image
shown in Fig. 4

belonging to blobs with a radius of 2 pixels that contain at
least 2 pixels.

4.3 Representative example

The detections of the last five frames of a 7-image sequence
where the all-in-one mode was used is shown in Fig. 6. These
images show a single very evident dust devil moving from
left to right. In the last frame a second dust devil, near the
center of the image, has also been captured. In addition to
the dust devils, the figure illustrates the effect of dust devil
ghosts. In the all-in-one mode, all the images are analyzed
simultaneously, using their average. Hence, the effects of a
high-contrast dust devil in any of the images is reflected in all
the other images, creating large image changes at locations
where there actually is a dust devil in a different frame. Thus,
for example, the presence of the left-most dust devil of the
first frame of Fig. 6 creates ghost images in the other frames.
On the other hand, the image of the dust devil in the fourth
frame of Fig. 6 is soft enough that it does not create ghosts in
any of the other frames. For this application, where compu-
tational resources are low and where the primary objective
is detection (as opposed to tracking), it is not worthwhile to
incur in the additional cost of removing these ghosts. In fact,
the presence of ghosts is as good an indication of motion as
the dust devils themselves. In addition, the effect of ghosts is
limited to a few frames around the location of the dust devil,
either because we are using the all-in-one mode, restricted
to 4–8 images, or because the running average of the feed
mode restricts the influence of a dust devil to the number of
frames used in the averaging (usually 6).

The detection of dust devils in a sequence is encoded in
binary thumbnails. In Fig. 7 we show the seven binary thumb-
nails that correspond to the image sequence that includes the
images in Fig. 6. The sequence shows the main dust devil
traversing the scene; the second dust devil, which appears
in the last frame is somewhat shadowed by the ghost of the
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Fig. 6 Detection of dust devils. Images 3–7 of a 7-image sequence containing two dust devils

image of the first dust devil in the fourth frame. In spite of the
presence of ghosts, the binary thumbnails show that there is
structured motion in the scene and therefore dust devils are
present. This sequence provides the scientists with informa-
tion that can be used to verify that the detector captured a
dust devil event and to prioritize its downloading. Given the
small size of the binary thumbnails, they can be also used
as a cost-effective method to tune and/or debug the detector
once it is under Mars environmental conditions.

4.4 Compression

The images sent to Earth from MER are compressed using
the ICER wavelet compressor [19]. ICER uses two compres-
sion criteria: image quality (proportional to bits per pixel) and
compressed image size; the compression stops when either
criteria is met. Most images downloaded from MER have a
quality that lies between 1 and 2 bits per pixel which, for the
7-image dust devil sequence of 1024×256 pixel images that
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Fig. 7 Binary thumbnails of 7-image sequence with two dust devils.
The thumbnails have been resized to match the proportions of the images
in Fig. 6

we are using as an example, yields a total size of between
1.75Mb and 3.5Mb, depending on the number of bits per
pixel.

For dust devils images, we can further increase the com-
pression ratio using the fact that the rover acquires images
when it is motionless and that they are acquired within the
span of a few minutes, where the statistical characteristics of
noise and scene illumination can be considered constant. In
this case, we can download the first image of the sequence and
the detected changes of the subsequent images; the sequence
is recovered by pasting these changes onto the first image. We
reduce the information of these subsequent images masking
out the areas without changes thus allowing ICER to encode
the masked-out region using a small number of bits. Figure 8
shows the masked version of the last image of the sequence
shown in Fig. 6.

Transmitting full resolution masked images, instead of
transmitting a series of small cropped images, allows us to
treat all the images of the dust devil campaign as standard

MER images. Additional compression ratios due to masking
depend on the size of the masked area. As an example, the
size of the compressed masked image in Fig. 8 is about 75%
smaller than that of the unmasked version of the same image,
while preserving the same image quality in the areas of inter-
est, for a total compression ratio that lies between 0.5 and 0.25
bits per pixel. Taking this rate as representative of the exam-
ple sequence, we could download the full 7-image example
sequence using only 1.25Mb to 625Kb (one unmasked and
six masked images). For the feed mode, which might operate
for periods of time long enough to cause the environment
conditions to change, it is possible to force the download of
additional full resolution images at predefined intervals of
time or frames.

5 The cloud SPOTTER

Cloud detection poses difficulties similar to those of the dust
devil detection. While clouds that can be easily detected by
a person can also be detected easily by an algorithm, faint
clouds with values approaching the noise levels of the image,
are difficult to detect automatically. Unfortunately, the vast
majority of clouds on Mars fall into the latter class. The set
of images from MER available for the design of the cloud
detector consisted, not of long sequences like in the dust devil
case, but of single images or sequences of up to 3 images each.
This prevents a motion detection approach to cloud detection.
Furthermore, motion detection would have had only partial
success as the motion of the clouds is a function of the wind,
i.e., even evident clouds might not exhibit detectable motion
under low wind conditions. Thus, the cloud detector is based
on the analysis of single gray-scale images.

5.1 The sky SPOTTER

The first step to analyze the sky is to segment it from the
ground. In related work, this type of image segmentation
has been used by Cozman et al. as a precursor for mountain
detection, to use as a guide for rover pose estimation [8]. The
sky detector consists of three steps. First, we place seeds in a
window that slides along the top of the image whenever the
homogeneity of the window is high. Then we grow the seeds
into a region S (not necessarily connected) using the edges
of the image as the stop condition. The edges of the image
are estimated using a Sobel edge detector. Finally, each pixel
located above a pixel in S whose value exceeds a threshold is
also labeled as part of S; this adds into S the sky regions with
high noise and clouds that the growing algorithm might have
missed. For example, the image shown in Fig. 9a yields the
sky mask in Fig. 9b. During this process, we determine the
skyline (the pixels at the interface of the sky and the ground)
and the horizon (the image row below which there are no
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Fig. 8 Masked product that
corresponds to the last image of
the sequence shown in Figs. 6
and 7

Fig. 9 Example of sky detection on an image with evident clouds: a
minimized image, b sky mask, c skyline buffer and d segmented sky

sky pixels). We create a buffer around the skyline, which can
be used to eliminate undesired intensity gradients at the sky-
ground interface. The buffer area of the skyline of Fig. 9a
is shown in Fig. 9c. The final result of masking the original
image with the sky mask (which includes the buffer) is shown
in Fig. 9d.

The sky detection process is automatic, fast and robust to a
number of conditions. Internally, it adapts to different image
reduction factors; externally, it adapts to different environ-
mental conditions like noise, gradients of illumination and
dusk and dawn. Likewise, it is not affected by image arti-
facts caused by lens inter-reflections, or by image artifacts
caused by cosmic rays, which manifest themselves on the
image as spurious shot noise. It can discern sky from ground
even in cases where the interface between them is fairly soft,
but it does fail when this interface is not clearly defined, as
in the case where the horizon is saturated because the cam-
era is aimed toward the sun. Figure 10 shows the sky masks,
already buffered about the skyline, for three images of Mar-
tian sky that exemplify the cases of dark sky, cloudy sky and
no ground visible. The performance of the sky detector is

Fig. 10 Examples of sky detection: a–b dark sky, c–d cloudy sky, e–f
no ground

close to 100% correct, which decouples the subsequent per-
formance of the cloud detector from that of the sky detector.

5.2 Cloud detection

Once the sky has been segmented, the cloud detector searches
for variations in the sky region using a Sobel edge detector;
strong edges indicate large gradients on the sky that are
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Fig. 11 Examples of cloud detection on images with a–d evident
clouds, and e–f wispy clouds

caused by the presence of clouds. Examples of images with
evident and wispy clouds and the corresponding detected
clouds are shown in Fig. 11.

The threshold of the value of an edge that corresponds to
a cloud is weighted by the noise of the image. In this case,
the threshold is defined as

threscloud = k3

(
1− 1

k4σsky

)
(18)

where k3 is the threshold for the noiseless case and k4 con-
trols the amount of bias due to noise. In our case, we used
a value of k3 = 10.9 found experimentally, which indicates
that for the training set the cloud detector has better discrim-
ination characteristics than the dust devil detector, i.e., it is
easier to detect a faint cloud against a homogeneous texture-
less sky than it is to detect a faint dust devil moving against
a heterogeneous textured ground.

Although both Eq. (17) and Eq. (18) bias the detection
thresholds using noise and have basically the same form, they
function in a different way. First, in the dust devil case, the
noise estimator breaks in the presence of edges created by the
motion on the scene, which allow us to use it as a secondary
cue about the presence of objects. Hence, we are using the
noise as an estimator of local structure so the variance of the
noise used to bias the threshold is local. For the clouds, the
noise estimator does not break as there are no strong edges
in the sky area and thus, the noise itself does not give any
indication of the structure of the image and it tends to be
homogeneous over the sky region. Hence, the noise used to
bias the cloud threshold is the average noise of the whole sky
area. Second, in the dust devil case, the noise is estimated
over the background subtracted image and thus the biasing
of the threshold is inversely proportional to the noise: high
noise variance is a secondary indication of image edges so
we lower the threshold to avoid false negatives. For the cloud
detector case, the noise is estimated over the image itself, so
high noise simply indicates unreliable data and thus, the bias
should be proportional to the noise: high noise variance indi-
cates unreliable data so we raise the threshold to avoid false
positives.

The cloud detector, in contrast to the sky detector, can
fail in the presence of many effects because it assumes that
any large changes in the sky correspond to the presence of
clouds. For example, vignetting may cause gradients at the
corners of the image, which the detector can mistake for
clouds. Vignetting effects are produced by a low exposure
due to a low camera gain or an incorrect shutter speed. They
also appear naturally under low light conditions (e.g., at dusk
and dawn). A second cause of failure is shot noise caused by
cosmic rays. This causes a local change of intensities in pix-
els that is often large enough that it is not filtered by the
low-pass filter, particularly in the case where the reduction
factor is low, e.g., 3 or 4. However, it is not cost-effective to
correct it as this effect is rare (observed in around 1% of the
images of our test set) and would be computationally expen-
sive to compensate. Finally, lens inter-reflections can cause
image effects that can be mistaken for clouds. These effects
increase in number and intensity as the angle between the
viewing direction of the camera and the sun narrows. One
such effect (a bright halo centered on the image) can be seen
in Fig. 10c and e.

The cloud detection step is followed by the creation of
a binary thumbnail that can be downloaded to verify detec-
tion or prioritize the download of the image. For example,
the detected clouds in Fig. 11b are summarized in the binary
thumbnail shown in earlier Fig. 1b; the same clouds are more
difficult to observe in the standard thumbnail shown in Fig. 1a.
Finally, if the image is selected for download, the scientist
can download the complete image or the area of the image
above the horizon line, increasing the compression ratio of
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the image. In the later case, the area of the image below the
horizon line is masked out as described for dust devils (see
Sect. 4.4). The additional gain in compression depends on
the proportion of sky vs. ground in the image.

6 Results

The engineering constraints are determined by the rover
resources and the time allocated to the task. Presently, the
resources consumed by a search campaign are image acqui-
sition time (e.g., about 20 s per image), the onboard mem-
ory occupied by the images while the scientists decide on
the science value of the set, and the bandwidth used by the
down-link. Tests on the Surface System Testbed (the SSTB—
a rover functionally identical to the MERs, with a 20 MHz
RAD6000 CPU) show that, excluding image acquisition, the
running time of the cloud detector is under 20 s per image
and that of the dust devil detector is approximately 15 s per
image in all-in-one mode; in feed mode, after the overhead
needed to set the running average, the analysis of each new
image takes 10 s. For both the clouds and the dust devils,
the full size images are stored onboard; however, unlike the
present campaigns, it is possible to gray-out the portions that
do not contain science data (see Sect. 4.4). Since the images
are stored on board after compression, there is a decrease in
both storage space and bandwidth usage, while preserving
the original size of the image and the resolution of area of
the image that contains the science event.

The science constraints were set by the scientists who are
currently carrying out the dust devil and cloud search cam-
paigns. Their specifications were a hit ratio above 80%, a
false positive ratio of 20% (low, to reduce the downloading
of images that do not have science events) and a false neg-
ative ratio of 10% (very low, to avoid missing potentially
valuable images). These ratios had to be achieved for a test
set of their selection, which contained Mars images acquired
during the campaigns, under a variety of conditions in terms
of science content, noise, relative direction of the sun, time
of day, resolution and level of compression.

More than 500 active dust devils have been documented
by the MER Spirit, mostly using the Navcam frames [15].
Although the features are difficult to detect, image process-
ing techniques were used to enhance the dust devils and
to derive detail. In many cases, sequences of frames were
obtained, which enabled animations of active dust devils to
be constructed, from which velocities and changes in dust
content were derived. The result of this image classification
effort was used as the ground truth for the development of the
dust devil detector. The dust devil detection algorithm was
tested on 385 images composed of 25 image sequences, all
acquired from the left navigation camera of the Spirit rover.
Each sequence was 6–20 images long. The set of sequences

Table 2 Results from the dust devil detection algorithm

No. Tuples + − Correct False − False +

4 279 120 159 237 10 32

(84.9%)

6 228 121 107 190 14 24

(83.3%)

8 180 116 64 155 10 15

(86.1%)

Table 3 Results from the cloud detection algorithm

Type No Correct False − False +

Evident cloud 29 29 0 0

(100%)

Wispy cloud 13 13 0 0

(100%)

Uncertain 5 3 3 0

(60%)

No cloud 163 152 0 11

(93.2%)

was biased toward faint dust devils, i.e., barely perceptible to
the naked eye, even when animated; many of the dust devils
could not be seen without processing the sets. Given these
sequences, we analyzed all contiguous 4, 6, and 8 image
subsets using the all-in-one mode. A true positive is scored
solely on whether or not the image contains dust devils, e.g.,
we are not requiring the location to be correct. The results
are presented in Table 2.

The ground truth used for the classification of clouds was
obtained by an atmospheric science student supervised by
one of the authors, who reviewed all the candidate images.
Using manual contrast adjustment and filtering he created a
catalog of all the images that contained clouds. The cloud
detection algorithm was tested on 210 images, composed of
47 images with clouds and 163 images with sky but with-
out clouds. Of the images with clouds, 29 contained evident
clouds, 13 contained soft, hard-to-see wispy clouds, and 5
were ‘borderline’ cases where scientists could not decide
with certainty whether a cloud was present. The results are
presented in Table 3.

7 Conclusion

We have described two detectors aimed to increase the sci-
ence return of the Mars Exploration Rover campaigns that
search for dust devils and clouds. The design of these
extractors was constrained by the limitations of the rovers
(memory, speed and bandwidth) and by the accuracy goals
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provided by the MER participating scientists in the team.
In addition, we used the intrinsic characteristics of the tasks
(e.g., static rover and camera) and the Martian environment
to generate assumptions that helped in the determination of
the algorithms to use, e.g., everything that moves is a dust
devil, any anomaly in the sky is a cloud. We illustrated both
algorithms using representative examples and presented the
results of their performance with respect to runtimes, band-
width usage, and accuracies achieved, all of which satisfy
the quantitative requirements given by the users (scientists)
and mission operations management. These programs have
been tested on Mars and are currently part of the operation
commands available to the scientists.

In this paper, we have focused on relatively simple cloud
and dust devil detection algorithms that operate successfully
given the severe CPU and memory constraints aboard the
Mars Rovers. Investigation of more sophisticated techniques
(e.g., machine learning-based detectors) to determine the
possible algorithms for cloud and dust devil detection on
future missions, with possibly less restrictive resource con-
straints, is a promising direction for future research.
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