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ABSTRACT
Most state-of-the-art Differential Evolution (DE) algorithms
are adaptive DEs with online parameter adaptation. We
investigate the behavior of adaptive DE on a class of hy-
brid functions, where independent groups of variables are
associated with different component objective functions. An
experimental evaluation of 3 state-of-the-art adaptive DEs
(JADE, SHADE, jDE) shows that hybrid functions are ”ada-
ptive-DE-hard”. That is, adaptive DEs have significant fail-
ure rates on these new functions. In-depth analysis of the
adaptive behavior of the DEs reveals that their parameter
adaptation mechanisms behave in a pathological manner on
this class of problems, resulting in over-adaptation for one of
the components of the hybrids and poor overall performance.
Thus, this class of deceptive benchmarks pose a significant
challenge for DE.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization—Glo-
bal optimization; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Adaptive Differential Evolution, Parameter Control, Decep-
tion, Hybrid Functions

1. INTRODUCTION
Differential Evolution (DE) is an Evolutionary Algorithm

(EA) that was primarily designed for real parameter opti-
mization problems [11]. Despite its relative simplicity, DE
has been shown to be competitive with more complex op-
timization algorithms, and has been applied to many prac-
tical problems [7]. As with other EAs, the search perfor-
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mance of DE algorithms depends on control parameter set-
tings [6, 7, 10]. A standard DE has three main control pa-
rameters, which are the population size N , scaling factor F ,
and crossover rate CR. However, it is well-known that the
optimal settings of these parameters are problem-dependent
and parameter tuning in real-world problem is often infea-
sible for various reasons. Since this is a significant problem
in practice, adaptive mechanisms for adjusting the DE con-
trol parameters on-line during the search process have been
studied by many researchers [6, 13,18].

It is well known that when the objective function is uni-
modal and nonseparable, high values of CR tend to perform
well, while low values of CR tend to be effective for prob-
lems that are multimodal and separable.1 In addition, when
the objective is unimodal, moderate values of F work well,
but if the objective is multimodal, high F is desirable in
order to maintain diversity. Thus, adaptive DE algorithms
attempt to adapt control parameters in order to match the
characteristics of the objective function [6,13,18].

EA performance evaluations for black-box optimization
are usually based on a suite of artificial benchmark prob-
lems. In recent years, benchmark sets such as the GECCO
BBOB [1] and CEC2005 benchmarks [12] have been widely
used in the EA community. However, it has been noted
that these benchmark sets consist mostly of problems which
have unrealistic, “extreme” characteristics, e.g., all of the
variables are separable, or all of the variables are nonsep-
arable [14]. Many real-world problems have more complex
structure and can not be trivially characterized. For exam-
ple, problems can be partially separable, where some groups
of variables interact with each other but are independent of
the other groups, i.e., “separability” is not a binary feature.
Yet, previous standard benchmarks focused almost exclu-
sively on such extreme benchmarks, casting some doubt on
the utility of such benchmarks in predicting the performance
of EAs on real-world problems. For example, real-world
problems where all variables interact uniformly and com-
pletely with each other (as in the standard Rosenbrock and
Rotated-Rastrigin functions) are rare. Because of this grow-
ing realization, the EA community has recently introduced
benchmark sets that incorporate more complex interactions
between variables [9, 14].

Hybrid objective functions [9] are a class of benchmark

1In separable functions the solution vector can be decom-
posed as f(x) =

∑D
i=1 fi(xi) and can be each dimension

can be optimized independently. On the other hand, non-
separable functions have dependences between variables and
cannot be so easily decomposed and optimized.



functions that have been recently proposed and incorporated
into the CEC2014 single-objective optimization competition
test suite. In a hybrid function, the variables in a solution
vector are partitioned into multiple groups, and each group
is evaluated according to a different component evaluation
function. The overall objective function value is the sum of
the component objective values. Unlike previous benchmark
functions where all variables were associated with the same
search space, each group of variables are associated with a
search space with characteristics that are distinct from the
search spaces associated with the other variable groups.
In this paper, we show that state-of-the-art adaptive DE

algorithms such as SHADE [13], JADE [18], and jDE [6]
perform extremely poorly on a class of hybrid functions [9]
composed of 2 components. We show, for example that a
simple hybrid function which, in some sense, closely resem-
bles the well know, trivial Sphere function, poses a serious
challenge for adaptive DEs. An in-depth analysis of the fail-
ure of DEs on hybrid functions, and show extensive evidence
that adaptive DEs are easily deceived by hybrid functions
– they tend to quickly adapt to solve the component of the
hybrid function that is easier to make progress on, and are
unable to solve the other component. Thus, this study iden-
tifies a class of adaptive-DE-hard problems that confound
adaptive DEs and poses a challenging direction for future
work.

2. DIFFERENTIAL EVOLUTION
This section briefly describes DE [11]. A DE popula-

tion is represented as a set of real parameter vectors xi =
(x1, ..., xD), i = 1, ..., N , where D is the dimensionality of
the target problem, and N is the population size.
In each generation t, a mutant vector vi,t is generated

from an existing population member xi,t by applying some
mutation strategy. vi,t = xr1,t+F · (xr2,t−xr3,t) is rand/1
mutation strategy which is the most popular mutation strat-
egy. The indices r1, r2, r3 are randomly selected from [1, N ]
such that they differ from each other as well as i. The pa-
rameter F ∈ [0, 1] controls the magnitude of the differen-
tial mutation operator. After generating the mutant vector
vi,t, it is crossed with the parent xi,t in order to generate
trial vector ui,t. Binomial Crossover, the most commonly
used crossover operator in DE, is implemented as follows:
For each j (j = 1, ..., D), if rand[0, 1) ≤ CR or j = jrand,
uj,i,t = vj,i,t. Otherwise, uj,i,t = xj,i,t. Where, rand[0, 1)
denotes a uniformly selected random number from [0, 1), and
jrand is a decision variable index which is uniformly ran-
domly selected from [1, D]. CR ∈ [0, 1] is the crossover rate.
After all of the trial vectors ui,t, 0 ≤ i ≤ N have been

generated, each individual xi,t is compared with its corre-
sponding trial vector ui,t, keeping the better vector in the
population. In Section 3, we say that a generation of trial
vector is successful if this replacement occurs. These process
are repeated until some termination criterion is encountered.

3. STATE-OF-THE-ART ADAPTIVE DE AL-
GORITHMS

This section reviews three state-of-the-art adaptive DE
variants, jDE [6], JADE [18], SHADE [13] that we evaluate
in our experimental study. These three algorithms were se-
lected because jDE and JADE are among the most highly
cited adaptive DE algorithms, and SHADE is the hightest

ranking DE method in the CEC2013 Competition on Real-
Parameter Single Objective Optimization [4].

jDE [6] assigns a different set of parameter values Fi and
CRi to each xi, which is used for generating the trial vec-
tors. Initially, the parameters for all individuals xi are set
to Fi = 0.5, CRi = 0.9. The control parameter values of
the trial vectors are inherited from their parents. However,
each parameter is randomly modified (within a pre-specified
range) with some probability, and modified parameters are
kept for the next generation only when a trial is successful.

JADE [18] has two corresponding, adaptive variables, µCR,
µF . The CR and F associated with each individual are
generated according to a normal/Cauchy distribution with
means µCR, µF . At the end of each generation, the values of
µCR, µF are updated according to the CR,F pair that re-
sulted in the generation of the successful trial vector in that
generation. As the search progresses, µCR, µF should grad-
ually approach the optimal values for the given problem. In
addition to parameter adaptation, JADE also uses a novel
mutation strategy called current-to-pbest/1 and an external
archive for storing previously generated individuals.

SHADE [13] is an adaptive DE which based on JADE al-
gorithm, but uses a historical memory of successful param-
eter settings based parameter adaptation scheme. Success-
history based adaptation uses a historical memoryMCR,MF

which stores a set of CR,F values that have performed well
in the past, and generate new CR,F pairs by directly sam-
pling the parameter space close to one of these stored pairs.

4. HYBRID FUNCTIONS
In this paper, we study a simplified, special class of hybrid

functions [9] in which the number of groups is 2, i.e., each
hybrid function is composed of two objective functions f, g
and sum the component objectives to obtain the overall,
hybrid objective value.

More specifically: Given a D-dimensional decision vari-
able vector x, in our hybrid functions Hf,g, x is partitioned

into xf (xf = xf
1 , ..., x

f
Df

) and xg (xg = xg
1, ..., x

g
Dg

), the

group of variables which will be evaluated using f , g re-
spectively. Let r ∈ [0, 1] be the fraction of variables as-
signed to component objective f . If r is set to high value,
xf is allocated to the high fraction of variables and vice
versa. We ensured the integrality of Df , Dg by setting Df =
round(D× r), Dg = D−Df . The Df indices corresponding
to xf are randomly selected from [1, D], and the remainder
are assigned to xg.

The objective function value of a candidate individual x
is Hf,g(x) = f(xf ) + g(xg), where f(xf ) and g(xg) are
the result of evaluating xf and xg according to f and g,
respectively. For example, if f is the Sphere function and
g is the Rastrigin function, then the objective value for a
candidate solution vector for the 30-dimensional (D = 30)
hybrid function HSphere,Rastrigin with r = 0.4 would be the
sum of the results of evaluating a 12-variable Sphere function
and a 18-variable Rastrigin function.

5. EXPERIMENTS
Our study uses hybrid objective functions that combine

pairs of the following five, commonly used benchmark func-
tions: Sphere, Schwefel 1.2, Rosenbrock, Rastrigin, Ackley.
Table 1 shows their properties (unimodal/multimodal, sepa-
rable/nonseparable). The search spaces were normalized to



Table 1: 5 basic functions for hybrid functions

Functions Properties

Sphere Separable, Unimodal

Schwefel 1.2 Nonseparable, Unimodal

Rosenbrock Nonseparable, Weakly Multimodal

Rastrigin Separable, Strongly Multimodal

Ackley Separable, Weakly Multimodal

Table 2: 8 hybrid functions

Type of Hybrid Hybrid Functions Base Functions

HSph,Ras Sphere & Rastrigin

HSph,Ack Sphere & Ackley

Heterogeneous
HSch,Ras Schwefel 1.2 & Rastrigin

HSch,Ack Schwefel 1.2 & Ackley

HRos,Ras Rosenbrock & Rastrigin

HRos,Ack Rosenbrock & Ackley

Homogeneous
HSph,Sch Sphere & Schwefel 1.2

HRas,Ack Rastrigin & Ackley

[−100, 100]D and the global optima were shifted to a point
where each dimension is uniformly selected from [−80, 80].
See details of these standard functions and their original
feasible regions in [16].
Table 2 shows the 8 hybrid functions that we studied,

which combine pairs of the 5 basic functions from Table 1.
We write Hf,g to denotes the hybrid functions constructed
from f and g (e.g., HSph,Ras is composed of the Sphere and
Rastrigin functions). The first 6 hybrid functions in Ta-
ble 2, which we refer to as heterogeneous hybrids, combine
functions whose characteristics differ significantly from each
other. For example, HSph,Ras combines the unimodal Sphere
function and the multimodal Rastrigin function. In con-
trast, the remaining 2 functions, which we refer to as ho-
mogeneous hybrids, (HSph,Sch, HRas,Ack) combine 2 similar
functions – HSph,Sch combines two unimodal functions, and
HRas,Ack combines two multimodal functions. The hetero-
geneous functions are studied in Section 5.1, and the homo-
geneous functions are studied in Section 5.2.
We studied problems with D = 30, 50 dimensions. The

ratio of variables assigned to each component function, r (see
Section 4), was varied from 0.0 to 1.0 in increments of 0.1.
Each run of the DE continues until either (1) the difference
between the best-so-far solution and the optimal solution
≤ 1e-8, in which case we treat the run as “success”, or (2)
the number of objective function calls exceeds D×10, 000, in
which case the run is treated as a“failure”. On each problem,
for each r, each algorithm is executed 50 times. The success
rate is the number of “successes” (as defined above) divided
by 50.
We evaluated three, state-of-the-art adaptive DE algo-

rithms: SHADE [13], JADE [18] and jDE [6] (see Section
3). In addition, we also evaluate the standard DE [11] for
comparison. The source code for JADE was from [2], min-
imally modified these programs so that it would work with
our hybrid benchmark functions. The other DE’s (standard

DE, SHADE, and jDE) were implemented by ourselves.2

For each algorithm, we used the control parameter values
that were suggested in the cited, original papers.3 For the
standard DE, we used a typical configuration [6, 18] with
population size N = 50 4, rand/1/bin generation strategy,
F = 0.5. We set CR to 0.1 and 0.9 since these values have
been shown to work well for separable functions and non-
separable functions respectively [10]. Below, we refer to the
standard DE using CR of 0.1 and 0.9 as DE-CR0.1 and
DE-CR0.9, respectively.

5.1 Results for hybrid functions with dissimi-
lar (heterogeneous) components

Figure 1 shows the success rates of DE algorithms on
the hybrid functions, HSph,Ras, HSph,Ack, HSch,Ras, HSch,Ack,
HRos,Ras, HRos,Ack (30, 50 dimensions) for various alloca-
tions (r) of variables among the two components.

We highlight several trends that are evident in Figure 1:

• The adaptive DE algorithms (SHADE, JADE, jDE)
tend to have very high success rates when r = 0.0
and 1.0. That is, they are quite capable of solving the
pure benchmark functions from which the hybrids are
derived. The only exception is the low success rates
for jDE on Schwefel 1.2 and Rosenbrock function for
50 dimensions.

• The success rates for adaptive DE algorithms tend to
be high when r is close to 0, deteriorate steeply for
some particular range of r (most commonly when r =
0.5 ∼ 0.9) but recover again at r = 1.0, and most of
the curves in Figure 1 are shaped like a ”V” or ”U”.

• Any degradations in success rates as a function of r
that are present in 30 dimensions are even more pro-
nounced in 50 dimensions. This is expected, since
problems with higher dimensionality are more difficult
for DE algorithms in general.

5.1.1 Discussion
It is well known that in general, unimodal functions are

easier to search than multimodal functions. Thus, on hy-
brid functions that combine unimodal and multimodal com-
ponents (HSph,Ras, HSph,Ack, HSch,Ras, HSch,Ack), one might
expect that as the multimodal component of the hybrid func-
tion increases, (i.e., fraction of variables evaluated using the
multimodal Rastrigin and Ackley functions increases), the
problems would become monotonically more difficult. How-
ever, our results indicate the opposite: success rates tended
to be higher as the multimodal component increased, and
the lowest success rates for SHADE, JADE and jDE oc-
curred when the allocation to unimodal components (Sphere,
Schwefel 1.2) were 0.8 and 0.9. A similar tendency was
shown in HRos,Ack, HRos,Ras, which combines weakly multi-
modal (Rosenbrock, Ackley) and strongly multimodal (Ras-
trigin) functions.

2We used version 1.1 of SHADE, available at [3].
3However, for jDE, we reduced the population size to 50
because using the population size of 100 suggested in [6],
since jDE did not converge within the maximum # of fitness
evaluations used in this study.
4Although N = 100 is commonly used, we chose 50 for the
same reason as for jDE above.
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Figure 1: Performance of DE on heterogeneous hybrid functions (HSph,Ras, HSph,Ack, HSch,Ras, HSch,Ack, HRos,Ras, HRos,Ack).
Success rate (out of 50 runs) is shown as a function of r, the fraction of variables allocated to component function f . Results
for 30 and 50 dimensions are shown.

The results on the HSph,Ras hybrid function (Figure 1(a))
are particularly interesting: While the state-of-the-art adap-
tive DEs that we selected (SHADE, JADE, jDE) have been
shown to perform well overall on previous benchmark suites,
all of them perform extremely poorly when r = 0.7 ∼ 0.9 –
In other words, state-of-the-art DE algorithms perform ex-
tremely poorly on a hybrid benchmark which is largely com-
posed of the trivial Sphere function! Furthermore, while DE
is known to perform well on separable functions [8], the
HSph,Ras function is a completely separable function that is
extremely challenging for adaptive DE. This is the first such
example that we are aware of. Finally (and perhaps most
surprisingly), the standard DE using CR = 0.1 performed
the best among all of the DEs evaluated on HSph,Ras, sig-
nificantly outperforming all of the sophisticated, adaptive
DEs.

5.2 Results for hybrid functions with similar
(homogeneous) components

Section 5.1 showed that on heterogeneous hybrid functions
where the components have significantly different search space
characteristics (e.g., a unimodal-multimodal hybrid), the
performance of DE tended to degrade dramatically for some
mixture r of the the components. Are hybrid functions,
in general, extremely difficult for DE? In this section, we
consider homogeneous hybrid functions where, in contrast
to Section 5.1, the component functions have search space
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Figure 2: Performance of DE on homogeneous hybrid func-
tions (HSph,Sch, HRas,Ack). Success rate (out of 50 runs) is
shown as a function of r, the fraction of variables allocated
to component function f . Results for 30, 50 dimensions are
shown.
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Figure 3: CR parameter adaptation history of adaptive DEs for r = 0.2 (top row) and r = 0.8 (bottom row) on HSch,Ras

(D = 30).
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Figure 4: F parameter adaptation history of adaptive DEs for r = 0.2 (top row) and r = 0.8 (bottom row) on HSch,Ras

(D = 30).

characteristics that are similar to each other. We used two
hybrid functions HSph,Sch and HRas,Ack. HSph,Sch combines
two unimodal functions, and HRas,Ack is a hybrid of two
multimodal functions.
The results for HSph,Sch and HRas,Ack in 30 and 50 di-

mensions are shown in Figure 2. SHADE, JADE and jDE
all achieve almost perfect success rates for all values of r
on HSph,Sch and HRas,Ack. This result is somewhat counter-
intuitive, given that solving Rastrigin and Ackley (both of
which are multimodal) individually is much more difficult
than solving Rastrigin and Sphere (unimodal) individually,
and yet, the hybrid HRas,Ack seems to be much easier than
the hybrid function HSph,Ras (Figure 1(a)), which stumps all
of the adaptive DE algorithms when r is between 0.7-0.9.
This result suggests that while hybrid functions are excep-

tionally challenging for DE when the component functions
have different search space characteristics from each other,
hybrids composed of similar components such as HSph,Sch,
HRas,Ack do not result in difficult problems for DE.
One notable counterexample to the claim that heteroge-

neous hybrids are challenging is in Figure 1(b), which shows
that all methods perform very well on the hybrid HSph,Ack,
regardless of r, despite the fact that Sphere is unimodal

and Ackley is multimodal. However, Ackley is only weakly
multimodal, and furthermore, both Sphere and Ackley are
separable, so HSph,Ack is actually similar to a homogeneous
hybrid function such as HSph,Sch and HRas,Ack and therefore
does not pose a challenge for adaptive DE.

5.3 Why do adaptive DEs fail? – Analysis of
adaptive DE parameter adaptation on hy-
brid functions

In order to understand why DE performance degrades so
dramatically in the hybrid function experiments in Section
5.1, we analyze the parameter adaptation behavior for the
adaptive DEs (SHADE, JADE, jDE) during the runs for the
experiments in Section 5.1.5

Figures 3 and 4 show the adaptation of the CR,F pa-
rameters (see Section 3) by SHADE, JADE, and jDE for
r = 0.2 (top row) and r = 0.8 (bottom row) on HSch,Ras (30
dimensions). The x-axis is the number of objective function
evaluations. The y-axis shows the proxy values of CR,F

5We collected this parameter adaptation data by re-running
the experiments described in Section 5.1 with identical ran-
dom seeds used in the original experiments and saving all of
the parameter adaptation histories at every generation.



values for each algorithm. Since each algorithm has a dif-
ferent adaptation mechanism, appropriate proxy values are
shown for each mechanism: (1) for SHADE, we show the me-
dian values of the CR,F values stored in historical memory,
MCR,MF , [13]; (2) for JADE, µCR, µF [18], the adaptive
parameters for CR and F , are shown; (3) for jDE, which
assigns a different CR and F to each individual i [6], the
median values CRi and Fi are shown.
Each of 50 runs (for each r, for each function, for each

algorithm) was classified as Successful Runs or Failed Runs,
depending on whether the run achieved the success criteria
defined at the beginning of Section 5 for this study, i.e., error
≤ 1e-8. In cases where all 50 runs were failures or all 50 runs
were successes, only one of these lines are shown.
Each figure also shows how proxy values for F and CR

adapt in successful runs on pure Rastrigin and Schwefel 1.2
functions (i.e., r = 0.0, 1.0). The “Schwefel 1.2” and “Ras-
trigin” lines in Figures 3 and 4 show that on the Schwefel
1.2 function, SHADE, JADE, and jDE adapt CR to high
values and F to medium values. On the other hand, for the
Rastrigin function, SHADE, JADE, and jDE adapt CR to
low values and F converges to high values. Thus, CR and
F converge to very different values depending on the target
function (Rastrigin vs. Schwefel 1.2). These results are con-
sistent with previous work which experimentally analyzed
the dynamics of DE parameter adaptation [6, 10], as well
as previous results on parameter adaptation for SHADE,
JADE, and jDE [6,13,18].
Now, consider the behavior of adaptive DE on HSch,Ras

when r = 0.2 (high fraction of variables allocated to the
Rastrigin function). From the figures, the adaptive behavior
of CR and F in SHADE and JADE very closely matches
their behavior on the Rastrigin function. jDE also displays
a similar tendency, albeit weaker (possibly due to the way we
defined the proxy metrics as medians). On the other hand,
for r = 0.8 (high fraction of variables allocated to Schwefel
1.2), the opposite trend can be seen, as the proxies for CR
and F behave similarly to the pure Schwefel 1.2 case. This
leads to the main, qualitative result of our study:

Observation 1. When an adaptive DE is applied to a
hybrid function, the parameter adaptation mechanism tends
to adapt and converge the CR and F parameters so as to
match the component for which initial improvements are eas-
ier. More specifically, the adaptive mechanisms target the
component with larger allocation of variables.

Observation 1 holds quite robustly for our class of hybrid
functions. Trends similar to those seen in Figures 3 and 4
were observed for almost all hybrid functions we tested, for
various values of r.
Since limited space prevents us from showing the equiva-

lents of Figures 3 and 4 for all functions and all r, we instead
rely on a summary, difference metric which allows to com-
pactly summarize and visualize these trends across all of the
hybrid functions, for all r.
Suppose that we run jDE on the Sphere function twice,

and that runs #1 and #2 terminate after 5 and 4 genera-
tions, respectively, and that the CR-proxy values (as defined
above in this section) are (0.7, 0.6, 0.5, 0.7, 0.4) for run #1
and (0.9, 0.8, 0.3, 0.5) for run #2. The average behavior of
CR on these two runs is (0.8, 0.7, 0.4, 0.6, 0.4).
Further suppose that jDE is run on Rastrigin twice, with

an average CR behavior of (0.4, 0.5, 0.4). The differential

Algorithm 1: Function δ(pf ,pg) for computing the dif-
ference between two average adaptation histories

input : pf ,pg: the average adaptation histories on f, g
output: δ: the average distance on overall generations

between pf and pg

1 tmax = min(|pf |, |pg|), δ = 0;

2 for t = 1 to tmax do
3 δ = δ + |pf,t − pg,t|;
4 δ = δ/tmax;

Algorithm 2: Aggregating the average distances (to ob-
tain the data points in Figure 5)

input : pHf,g
, pf , pg on all hybrid functions

output: δHf,g ,f , δHf,g,g: the average distance on all
hybrid functions

1 δHf,g ,f = 0, δHf,g ,g = 0;

2 for Hf,g ∈ I do

3 δHf,g ,f = δHf,g ,f + δ(pHf,g
,pf );

4 δHf,g ,g = δHf,g ,g + δ(pHf,g
,pg);

5 δHf,g ,f = δHf,g ,f/|I|, δHf,g,g = δHf,g ,g/|I|;

values between the CR-history on Sphere and the Rastrigin
function is (0.4, 0.2, 0.0), and the distance between the CR-
history over time is (0.4 + 0.2 + 0.0)/3 = 0.26. Algorithm 1
describes the computation of average distance in general.

The distance δ(pf ,pg) can be used as a measure of the
similarity between the parameter adaptation histories pf ,pg

on f and g. The smaller the value of δ(pf ,pg), the more
similar the parameter adaptation histories are, and con-
versely, the larger δ(pf ,pg) is, the more different the param-
eter adaptation histories. Average distances among histories
among a set of instances I can be computed similarly.

For example, for some particular r, suppose that δ(HSph,Ras,
Sphere)=0.4 and δ(HSch,Ack,Schwefel 1.2) = 0.6. In this
case, the average value of the distances is (0.4 + 0.6)/2 =
0.5. For the same r, if δ(HSph,Ras,Rastrigin) = 0.6 and
δ(HSch,Ack,Ackley) = 0.8, then the average value of the dis-
tances is (0.6+0.8)/2 = 0.7. In particular, we are interested
in distances between the histories on a hybrid function Hf,g

with particular r value and the histories on its component
functions, δ(Hf,g, f) and δ(Hf,g, g), averaged over all in-

stances δ
r
Hf,g ,f , δ

r
Hf,g ,g. Algorithm 2 shows the pseudocode

for this overall computation for some particular r.
Figures 5 shows δ

r
Hf,g ,f , δ

r
Hf,g,g for both DE parameters

CR (top row) and F (bottom row), averaged over all 6 of
the heterogeneous hybrid functions in Table 2 according to
Algorithm 2, for r ∈ 0.1, ..., 0.9. Data for both 30 and 50
dimensions are included in the SHADE and JADE figures
(the similarity metric can be computed independently of di-
mensionality). Since jDE had a success rate of 0 on Schwefel
1.2 for 50-dimensions, we only included data for 30 dimen-
sions. When computing the average histories for the hybrid
function, we include all runs, including successful and failed
runs. On the other hand, for the average histories for the

6If two histories have different lengths, the unmatched por-
tions of the longer history are ignored.
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Figure 5: Average distances of parameter adaptation history of SHADE, JADE, jDE between heterogeneous hybrid functions
(HSph,Ras, HSph,Ack, HSch,Ras, HSch,Ack, HRos,Ras, HRos,Ack) and its component function f , g.

pure component functions f and g, we used only the success-
ful runs, because we want to compare the behavior on hybrid
functions vs. the “ideal”behavior on the pure functions, and
the average successful behavior is used as an approximation
for this “ideal” behavior.
Figures 5 show that for all of the adaptive DEs. When r is

low (Hf,g is mostly allocated to g), the distance between the

behavior on δ
r
Hf,g ,g is small, which means that the parame-

ter adaptation behavior of the DE on Hf,g is quite similar
to its parameter adaptation behavior on g. However, as r
increases, δ

r
Hf,g ,g grows monotonically, i.e., the DE behaves

differently on the hybrid than it would on g. At the same
time, as r increases, δ

r
Hf,g ,f decreases, and the DE behaves

more and more like it would on f . This trend can be very
clearly seen for both CR and F .
From the results above, we can see that in a heterogeneous

hybrid function Hf,g composed of two component functions
f , g with different search space characteristics, the proxy
values for CR,F in state-of-the-art adaptive DEs behave
similarly to when the DE is applied to the individual com-
ponent function f or g which is allocated more variables in
the hybrid function, i.e., the individual component which is
most “similar” to the hybrid function.
Thus, we have shown that Observation 1 consistently holds

across all 3 state-of-the-art adaptive DEs, for all of the het-
erogeneous, hybrid functions where pathological behavior
was observed in Section 5.1.

5.3.1 Discussion
In general, most adaptive DEs that have been proposed to

date, including SHADE, JADE, and jDE, operate according
to the principle that if the current set of control parameter
setting S = (CR,F ) successfully generates trial vectors that
are more fit than their parents, then the next set of control
parameters to be applied should be somehow based on or
influenced by S. In other words, adaptive strategies tend to
operate based on a meta-greedy assumption.
On our class of hybrid functions, this meta-greedy ap-

proach leads to failure. In a hybrid with 2 component func-
tions, the component CH with a higher fraction of variables
contributes more to the objective function than the other
component with lower allocation, CL, because the overall

objective value is the sum of the component objective val-
ues. Our results suggest that there is a tendency for adap-
tive DEs to quickly adapt to achieve good performance on
CH , neglecting CL. After optimizing the CH component,
the adaptive DE is unable to re-adapt to so that the CL

component can be optimized.
This explains the pathological behaviors by adaptive DEs

observed in Section 5.1, Figure 1(c): Although SHADE,
JADE, and jDE had success rates close to 1.0 on HSch,Ras

when r = 0.2, the success rate was almost 0.0 when r = 0.8.
This is most likely due to the meta-greedy nature of the
adaptive DE described above. The components of HSch,Ras,
Schwefel 1.2 and Rastrigin, differ significantly. Schwefel 1.2
is unimodal, and nonseparable, while Rastrigin is multi-
modal and separable, and as noted earlier, parameter set-
tings which are appropriate for one are ineffective for the
other. Figures 3 and 4 show that the DEs have adapted
entirely for one or the other – this means that they have
become poorly adapted for the other component.

When r = 0.8, the DEs have adapted to solve Schwefel
1.2, a unimodal, nonseparable function. However, these pa-
rameter settings are very poorly suited for Rastrigin, a mul-
timodal, separable function, and it is likely that the DEs
fail because their control parameters (which are adapted for
a unimodal function) promote rapid descent into local min-
ima, where the search becomes trapped.

A similar conclusion can be reached regarding the failure
of adaptive DE on HRos,Ras in Figure 1(e). Although both
Rosenbrock and Rastrigin are multimodal, Rosenbrock is
nonseparable (requiring high CR values), while Rastrigin is
separable (requiring low CR values), and overadaptation for
one function prevents success on the other component of the
hybrid objective. In general, in heterogeneous hybrid func-
tions that include Rastrigin or Ackley, when the allocation of
variables to the multimodal Rastrigin and Ackley functions
are too small, the adaptive DEs can not sufficiently adapt to
the multimodal component, resulting on poor success rates
on the hybrid functions.

In contrast, the high success rates for r = 0.2 can be
explained as follows. Adaptation for the multimodal Ras-
trigin function does not cripple the DE’s ability to solve
unimodal problems such as the Schwefel 1.2. Although con-



vergence may be slowed compared to parameter settings that
are tuned for a unimodal function, the lack of local minima
means that the search algorithm will eventually succeed.

6. CONCLUSION
We investigated the behavior of DE on a class of hybrid

functions [9], where groups of variables are assigned to differ-
ent component functions. We showed that state-of-the-art
adaptive DEs (SHADE [13], JADE [18], jDE [6]) all perform
very poorly when the components of the hybrid functions are
heterogeneous, with different search space characteristics.
The main contribution of this study is an in-depth anal-

ysis of adaptive DE control parameter behavior on hybrid
functions, showing that adaptive DE fails on these hybrid
functions because their parameter adaptation mechanisms
are fundamentally mismatched with the structure of hybrid
functions. DE control parameter adaptation tends to be“de-
ceived” into over-adapting for one of the components of the
hybrid, at the expense of adaptation for the other compo-
nent.
Previous analysis of parameter adaptation in DE has been

limited to plotting control parameter values [6, 18]. Our
analysis of DE parameter adaptation introduces a new tech-
nique for summarizing and visualizing parameter adaptation
(the parameter history distance metric described in Section
5.3) which provided a very clear understanding of when and
how DE succeeds and fails in the class of hybrid functions.
We believe that this kind of aggregated distance can be
applied to understand the adaptive behavior of DE (and
other algorithms with adaptive parameters) for other types
of functions, e.g. multi-objective optimization.
This work suggests that a parameter adaptation mecha-

nism that seeks to optimize its behavior for a single, target
function is a major design limitation when faced with a hy-
brid objective function. Our preliminary efforts to overcome
this limitation by, e.g., associating a different set of (CR,F )
parameters for each variable, have not been successful so far,
and this seems to be a nontrivial problem. Therefore, design-
ing methods that are effective on hybrid objective functions
is a challenging direction for future research. One possible
direction would be to investigate crossover methods that ex-
plicitly seek to identify and exploit dependencies between
variables in order to automatically partition and handle the
components of the hybrid objective, e.g., [17].
While this study was limited to hybrid functions with 2

component functions, preliminary experiments suggest that
similar issues arise on hybrids with more components, and
we are currently extending this study to hybrids with 3+
components. Finally, while this study focused on under-
standing the difficulty that hybrid functions pose for adap-
tive DE, heterogeneous hybrid functions are challenging for
other kinds of non-adaptive, state-of-the-art DE. CoDE, a
well-known non-adaptive DE [15] also fails on these func-
tions (see Supplemental Data [5]). Understanding the rea-
son why hybrid functions are difficult for CoDE, as well as
evaluation of hybrid functions on other classes of DE is an
avenue for future work.
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