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Abstract – Spacecraft design optimization is a
difficult problem, due to the complexity of
optimization cost surfaces and the human ex-
pertise in optimization that is necessary in or-
der to achieve good results. In this paper, we
propose the use of a set of generic, metaheu-
ristic optimization algorithms (e.g., genetic
algorithms, simulated annealing), which is
configured for a particular optimization prob-
lem by an adaptive problem solver based on
artificial intelligence and machine learning
techniques. We describe work in progress on
OASIS, a system for adaptive problem solving
based on these principles.
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1. INTRODUCTION

Many aspects of spacecraft design can be
viewed as instances of constrained optimiza-
tion problems. Given a set of decision vari-
ables X and a set of constraints C on X, the
constrained optimization is the problem of as-

signing values to X to minimize or maximize
an objective function F(X), subject to the con-
straints C.

Spacecraft design optimization is difficult us-
ing current optimization methods because:
• Current methods require a significant

amount of manual customization by the
users in order to be successful, and

• Current methods are not well suited for
mixed discrete/continuous, non-smooth,
and possibly probabilistic cost surfaces
that can arise in many design optimization
problems.

 
We are currently developing the Optimization
Assistant (OASIS), a tool for automated
spacecraft design optimization that addresses
these two issues. The goal of OASIS is to fa-
cilitate rapid "what-if" analysis of spacecraft
design by developing a widely applicable,
spacecraft design optimization system that
maximizes the automation of the optimization
process and minimizes the amount of cus-
tomization required by the user.

OASIS consists of an integrated suite of global
optimization algorithms that are appropriate
for non-smooth, possibly probabilistic, mixed
discrete/continuous cost surfaces, and an in-
telligent agent that decides how to apply these



In Proceedings of IEEE Aerospace Conference, Snowmass, CO, 1997

algorithms to a particular problem. Given a
particular spacecraft design optimization
problem, OASIS performs a meta-level opti-
mization in order to:
• Select an appropriate optimization tech-

nique to apply to the problem, and
• Automatically adapt (customize) the tech-

nique to fit the problem.

The rest of this paper is organized as follows.
Section 2 describes the application of meta-
heuristic algorithms to optimization, and its
problems. In Section 3, we define the frame-
work of adaptive problem solving that we
adopt for OASIS and describe related work in
the area. Section 4 presents an overview of the
OASIS system architecture and describes our
approach to solving the adaptive solving
problem task. In Section 5, we describe two
spacecraft design optimization problems
which are currently being used as testbed ap-
plications for OASIS: the NASA New Millen-
nium DS-2 Mars Microprobe and the Neptune
Orbiter spacecraft.

2. OPTIMIZATION USING METAHEURISTICS

Although optimization is a mature field that
has been studied extensively by researchers,
there are a number of open, fundamental
problems in the practical application of opti-
mization techniques.

First, the problem of global optimization on
difficult cost surfaces is poorly understood.
The optimization of smooth, convex cost
functions is well understood, and efficient al-
gorithms for optimization on these surfaces
have been developed. However, these tradi-
tional approaches often perform poorly on cost
surfaces with many local optima, since  they
tend to get stuck on local optima. Unfortu-
nately, many real-world optimization prob-
lems have such a "rugged" cost surface and are
thus difficult problems for traditional ap-
proaches to optimization.

Second, many real-world optimization prob-
lems are black-box optimization problems, in
which the structure of the cost function is
opaque. That is, it is not possible to directly
analyze the cost surface by analytic means in
order to guide an optimization algorithm. For
example, F(X) can be computed by a complex
simulation about which the optimization algo-
rithm has no information (e.g., to evaluate a
candidate spacecraft design, we could simulate
its operations using legacy FORTRAN code
about which very little is known to the op-
timizer except for its I/O specifications).
Black-box optimization problems are therefore
challenging because currently known algo-
rithms for black-box optimization are essen-
tially "blind" search algorithms—instead of
being guided by direct analysis of the cost sur-
face, they must sample the cost surface in or-
der to indirectly obtain useful information
about the cost surface.

Recently, there has been much research activ-
ity in so-called metaheuristic algorithms such
as simulated annealing [15], tabu search [7,8]
and genetic algorithms [9] for global optimi-
zation. These are loosely defined, "general-
purpose" heuristics for optimization that pro-
ceed by iteratively sampling a cost surface,
and they implement various mechanisms for
escaping local optima. Although these algo-
rithms have been shown to be successful on
numerous applications with difficult cost sur-
faces, the behavior of these algorithms is still
poorly understood. Successful application of
these metaheuristics1 to a particular problem
requires:
• Selection of the most appropriate metaheu-

ristic for the problem, and
• Intelligent configuration of the metaheu-

ristic by selecting appropriate values for

                                                
1 In the rest of the paper, we use the terms metaheuristic
and metaheuristic algorithm interchangeably.
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various control parameters (e.g., tempera-
ture cooling schedule for simulated an-
nealing).

Currently, successful applications of metaheu-
ristics are often the result of an iterative cycle
in which a researcher or practitioner selects
and adjusts a number of different metaheuris-
tic/control parameter combinations on a
problem, observes the results, and repeats this
process until satisfactory results are obtained.
This process of selecting and configuring a
metaheuristic to obtain good results on a
given problem is usually time-consuming, and
requires a significant amount of optimization
expertise (which is often very costly to ob-
tain). As a result, in many cases, the cost of
successfully applying metaheuristic tech-
niques on black-box problems can be pro-
hibitively expensive.

One might wonder whether there is some su-
per-metaheuristic and a perfect configuration
of this super-metaheuristic, which outperforms
all others for all problems of interest, or
whether it is at least possible to characterize
the performance of metaheuristic configura-
tions in general. The current conventional
wisdom in the optimization research commu-
nity is that this possibility is extremely un-
likely (although it not likely that this can ever
be formally proved, due to the empirical na-
ture of the question).2 This is supported by
related recent theoretical work such as [24],

                                                
2 Nevertheless, it is not difficult to find in the metaheu-
ristic literature empirical studies that claim that one
metaheuristic or one configuration is better than an-
other (e.g., [25] boldly claims that “the objective of this
paper is...to study the general tendencies of various
algorithms,” and proceeds by comparing the perform-
ance of several metaheuristics on a scheduling problem.
They conclude: “If obtaining solutions of higher quality
is important, use Simulated Annealing or Greedy Local
Search. Detailed parameter tuning is not important for
Simulated Annealing and Greedy Local Search pro-
vided that sufficient amount of computational time is
available.”

which shows that over all possible cost sur-
faces, the expected performances of all opti-
mization algorithms are exactly equal. Al-
though it is possible that “all problems of in-
terest” (in our context, all nontrivial spacecraft
design optimization problems) reflect a par-
ticular subset of all possible cost surfaces for
which some metaheuristic configuration’s per-
formance dominates that of all others, we
strongly believe that this is not the case. Thus,
our assumption throughout this paper is that
to obtain the best performance for a particular
problem instance, it is necessary to select a
metaheuristic  and configure it so that it
matches the structure of the cost surface of the
instance.

3. ADAPTIVE PROBLEM SOLVING

A natural approach to alleviating this problem
of selecting and configuring a metaheuristic
for particular applications is to automate the
process. This is an instance of the more ge-
neric, adaptive problem solving task, which
has been studied by the artificial intelligence
community, where the task is to automatically
configure a problem solving system (such as
an optimization system). In this section, we
give the standard definition of the adaptive
problem solving task, and review previous ap-
proaches in the literature3. We then discuss a
generalization of adaptive problem solving,
which is the framework we will adopt for the
metaheuristic application problem in space-
craft design optimization.

Before discussing approaches to adaptive
problem solving, we formally state the stan-
dard definition of the task (as proposed by
[10,11,12,17,23]. Adaptive problem solving
requires a configurable problem solver,
meaning the problem solver possesses control

                                                
3 The formal statement of the traditional adaptive prob-
lem solving forumulation and the review of previous
work is based on the treatment in [10].
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decisions that may be resolved in alternative
ways. Given a configurable problem solver,
PS, with several control points, CP1...CPn

(where each control point CPi corresponds to a
particular control decision), and a set of values
for each control point, {Mi,1...Mi,k}

4, a control
strategy is an assignment of values to control
points that defines the overall behavior of the
problem solver. Let PSSTRAT be the problem
solver operating under a particular control
strategy.

The quality of a problem solving strategy is
defined in terms of the decision-theoretic no-
tion of expected utility. Let U(PSSTRAT,d), be a
real valued utility function that is a measure of
the goodness of the behavior of the problem
solver on a specific problem d.5 Then, the ex-
pected utilit y can be defined formally over a
distribution of problems D:

E U PS U PS d pr dD STRAT STRAT
d D

[ ( )] ( , ) ( )= ×
∈
∑

The goal of this standard formulation of adap-
tive problem solving can be expressed as:
given a problem distribution D, find some
control strategy in the space of possible strate-
gies that maximizes the expected utilit y of the
problem solver. For example, for the problem
of configuring a metaheuristic, say, a genetic
algorithm, in a design optimization system, the
control points include: the population size, the
crossover rate, and the mutation rate, etc.
Utilit y might be defined as the quality of the
design generated by the optimizer.

Note that a number of approaches to adapting
control points such as the population size of a
GA [21], have been proposed in the literature.
In our framework, we consider such strategies

                                                
4 Note that a method may consist of smaller elements so
that a method may be a set of control rules or a combi-
nation of heuristics.
5 We assume that the problem solver runs for a finite
amount of time and eventually terminates.

to be values of control points (e.g., a particular
implementation of an adaptive temperature
schedule is one of the possible values for the
temperature schedule control point for the
simulated annealing metaheuristic).

Several approaches to adaptive problem solv-
ing have been discussed in the literature. The
first, a syntactic approach, is to preprocess a
problem-solving domain into a more efficient
form, based solely on the domain’s syntactic
structure. For example, Etzioni’s STATIC
system analyzes a portion of a planning do-
main’s deductive closure to conjecture a set of
search control heuristics [3]. Dechter and
Pearl describe a class of constraint satisfaction
techniques that preprocess a general class of
problems into a more efficient form [2]. More
recent work has focused on recognizing those
structural properties that influence the effec-
tiveness of different heuristic methods
[4,14,22]. The goal of this approach is to pro-
vide a problem solver with what is essentially
a big lookup table, specifying which heuristic
strategy to use based on some easily recogniz-
able syntactic features of a domain. While this
latter approach seems promising, work in this
area is still preliminary and has focused pri-
marily on artificial applications. The disad-
vantage of purely syntactic techniques is that
they ignore a potentially important source of
information, the distribution of problems.
Furthermore, current syntactic approaches to
this problem are specific to a particular, often
unarticulated, utilit y function (usually prob-
lem-solving cost). For example, allowing the
utilit y function to be a user-specified parame-
ter would require a significant and problematic
extension of these methods.

The second approach to adaptive problem
solving, the generative approach, is to gener-
ate custom-made heuristics in response to
careful, automatic, analysis of past problem-
solving attempts. Generative approaches con-
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sider not only the structure of the domain, but
also structures that arise from the problem
solver interacting with specific problems from
the domain. This approach is exemplified by
SOAR [16] and PRODIGY/EBL [18]. These
techniques analyze past problem-solving
traces and conjecture heuristic control rules in
response to particular problem solving ineffi-
ciencies. Such approaches can effectively ex-
ploit the idiosyncratic structure of a domain
through this careful analysis. The limitation of
such approaches is that they have typically fo-
cused on generating heuristics in response to
particular problems and have not addressed
the issue of adapting to a distribution of prob-
lems well6. Furthermore, as with the syntactic
approaches, thus far they have been directed
towards a specific utility function.

The third approach is the statistical approach.
These techniques explicitly reason about per-
formance of different heuristic strategies
across the distribution of problems. These are
generally statistical generate-and-test ap-
proaches that estimated the average perform-
ance of different heuristics from a random set
of training examples and explore an explicit
space of heuristics with greedy search tech-
niques. Examples of such systems are COM-
POSER [11], PALO [12], and the statistical
component of MULTI-TAC [19]. Similar ap-
proaches have also been investigated in the
operations research community [26]. These
techniques are easy to use, apply to a variety
of domains and utilit y functions, and can pro-
vide strong statistical guarantees about their
performance. They are limited, however, as
they are computationally expensive, require
many training examples to identify a strategy,

                                                
6 While generative approaches can be trained on a
problem distribution, learning typically occurs only
within the context of a single problem. These systems
will often learn knowledge which is helpful in a par-
ticular problem but decreases utility overall, necessi-
tating the use of utility analysis techniques.

and face problems with local optima in the
space of control strategies. Furthermore, they
typically leave it to the user to conjecture the
space of heuristic methods (see [19] for a no-
table exception).

A Generalization of Adaptive Problem Solving

The standard formulation of adaptive problem
solving described above is applicable when we
want to generate a problem solver that will
perform well for a particular problem distri-
bution. There are some problems with this
formulation, however, that make it inappropri-
ate for our domain of metaheuristic applica-
tion for spacecraft design optimization.

First, although the strategy found by an adap-
tive problem solver may have good expected
performance over some distribution of prob-
lem instances, there is no guarantee that the
problem solver performs well for any particu-
lar instance. In the domain of design optimi-
zation, the objective is often to generate the
best possible solution for a specific problem
instance, so there is a significant incompati-
bilit y in the objective of the problem formula-
tion.

Second, the standard adaptive problem solving
formulation implicitly assumes that only one
specific configuration of the problem solver
will be applied to a particular problem in-
stance. If the objective is to generate the best
possible solution for a problem, then it may be
worthwhile to try a number of different prob-
lem solver configurations on the problem in-
stance. In design optimization, it is often
worthwhile to use massive amounts of com-
puting resources7 in order to make significant
improvements in the quality of the design,
which could lead to benefits that far outweigh

                                                
7 CPU cycles are often quite cheap and readily avail-
able, given the amount of computation available on idle
workstations in many engineering organizations.
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the computational resources used to generate
the improvement.

Finally, the problem solver configuration
found by the standard adaptive problem solv-
ing formulation is useful when we are given a
problem instance that is “typical” of the in-
stances in the distribution for which the prob-
lem solver was configured. This, however,
may be of limited utilit y if the problem solver
is faced with an instance which is significantly
different from previously seen instances. This
is a problem in our domain, since we are de-
signing a generic design optimization tool for
which the distribution is virtually unrestricted.
One could argue that if an instance is suffi-
ciently different from the distribution for
which the configuration was optimized, then
this forms the basis for a new distribution on
which to run the adaptive problem solver
(where initially, the distribution consists of
this single, new instance). Of course, if we
allow for the possibility of maintaining multi-
ple problem solver configurations, one of
which should be selected depending on the
distribution to which a particular instance be-
longs, new subproblems arise that must be
solved, including:
• Given a new problem instance, decide

which distribution it belongs to.
• Deciding when/whether to “split” an ex-

isting problem distribution into two or
more distributions when additional prob-
lems are added to the distribution.

For our problem of metaheuristic application
for design optimization, what is needed then is
a task formulation that maximizes the per-
formance for each particular problem instance,
and does not  rely on initial assumptions about
the problem distribution from which the in-
stance is drawn. Our formulation for adaptive
problem solving is therefore the following:

Definition : (Adaptive Problem Solving)—
Let d be a problem instance. Let PSSTRAT

be the problem solver operating under a
particular control strategy. Let
U(PSSTRATt,d), be a real valued utility
function that is a measure of the goodness
of the behavior of the problem solver on d.
The task of adaptive problem solving is to
find a control strategy for the problem
solver that maximizes U(PSSTRAT,d). Given
a set of problem instances D=d0, d1,...dn,
the task of adaptive problem solving is to
find a set of control strategies Strat0,
Strat1,... StratN, that maximizes:

U PS dSTRAT
d D

d
( , )

∈
∑

If we were to treat the set of instances in the
definition above as being samples drawn from
a distribution, this formulation of adaptive
problem can be seen as a generalization of the
standard formulation, without the restriction
that

Strat0 = Strat1 = StratN.

The approaches for the standard formulation
can now be reevaluated with respect to the
new formulation. In general, if we know of a
configuration ConfD that maximizes expected
utilit y over a distribution D of problems to
which a particular instance d belongs, then one
would, by definition, expect (in the probabil-
istic sense) that configuration to perform well
on the instance. Suppose that our approach to
solving the new adaptive problem solving
formulation is to search the space of configu-
rations to find a near-optimal control strategy.
Then, a useful heuristic would be to try ConfD
first. Thus, we can treat solutions to the stan-
dard formulation as heuristic solutions for our
formulation of adaptive problem solving.
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4. OASIS ARCHITECTURE

OASIS (Optimization Assistant) is an inte-
grated software architecture for spacecraft de-
sign optimization that supports adaptive
problem solving. The three major components
of OASIS are:

• A spacecraft design model,
• A suite of configurable metaheuristics, and
• An adaptive problem solver.

We describe each of these in the following
discussion.

Spacecraft Design Model

The spacecraft design model is a software
simulation of a spacecraft design. The design
model takes as input decision variables to be
optimized, and outputs an objective function
value, which is assigned as the result of an ar-
bitrarily complex computation (i.e., the simu-
lator is a black-box simulation).

Thus, the design model is the component of
OASIS that is the most domain-specific, and is
provided by the end users, i.e., spacecraft de-
signers. In order for an optimization system
such as OASIS to be useful in practice, it must
support a wide range of design models, which
may consist of models implemented using
various languages on different platforms. It is
not feasible to expect spacecraft designers to
implement their models in a particular lan-
guage on a particular platform—if such incon-
venient constraints were to be imposed, the
optimization system will not be used by
spacecraft designers.

The Multidisciplinary Integrated Design As-
sistant for Spacecraft (MIDAS) [6] is a
graphical design environment that allows a
user to integrate a system of possibly distrib-

uted design model components together using
a methogram, a graphical diagram represent-
ing the data flow of the system. Each node in
the methogram corresponds to a design model
component, which may be one of 1) a model
in a commercial design tool such as IDEAS,
NASTRAN, or SPICE, 2) a program written
in C, C++, or FORTRAN, or 3) an embedded
methogram (i.e., this allows methograms to
have a hierarchical structure). Inputs to nodes
in the methogram correspond to input pa-
rameters for the component represented by the
node, and outputs from a methogram node
correspond to output values computed by the
component. MIDAS is implemented as a
CORBA object, and supports a wide variety of
methods that can be used by external client
systems (e.g., a GUI) to manipulate the
methograms.

This last feature of MIDAS (i.e., the CORBA
interface that allows client systems to freely
manipulate methograms) is particularly useful
for the purposes of designing a black-box op-
timization system, since it essentially provides
the optimization system with a uniform inter-
face for any design model encapsulated in
MIDAS. Therefore, our solution to the prob-
lem of supporting a wide range of design
models is to support an interface to MIDAS.
That is, OASIS is designed to be an optimiza-
tion system that can be used to optimize any
MIDAS model.

Thus, the design model, which constitutes the
user input to the OASIS sytem, is composed of
the following:
• A MIDAS methogram that encapsulates

the design model,
• A list of decision variables, as well as

ranges of their possible values (may be
continuous or discrete), and
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• An output from a methogram node that
corresponds the user’s objective function
value.8

Figure 1 shows part of a MIDAS methogram
for the Neptune Orbiter model (see Section 5).

Metaheuristic Suite

OASIS includes a set of configurable meta-
heuristics, which are generic implementations
of metaheuristics that provide an interface for
dynamic reconfiguration of their control points

                                                
8 The objective function could either be obtained di-
rectly from one of the existing outputs in the
methogram, or it could be computed by adding a new
node that computes, e.g., a weighted linear combination
of some set of output nodes.

at runtime. Currently, this consists of a recon-
figurable genetic algorithm and a reconfigur-
able simulated annealing/local search. These
are briefly described below9:

Genetic Algorithm—A genetic algorithm
works as follows: a population of  sample
points from the cost surface is generated. In a
process analogous to biological evolution, this

                                                
9 The following is a simplified account - there is much
overlap between metaheuristics, and their boundaries
are unclear (it is often possible to consider one meta-
heuristic as a specialization/generalization of another).
For example, it is possible to think of some instances of
local search as a special case of genetic algorithm with
a population of 1. For clarity, we present metaheuristics
using their “canonical” descriptions.

Figure 1—Screen shot of a MIDAS methogram (part of the Neptune Orbiter model)
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population is evolved by repeatedly selecting
(based on relative optimality) members of the
population for reproduction, and recombin-
ing/mutating to generate a new population.
The control points of the genetic algorithm
include: the population size, the methods used
for selection, crossover, and mutation
(methods include the algorithm, as well as
their control parameters, such as their fre-
quency of application).

Simulated Annealing/Local Search—Local
search proceeds by generating an initial point
on the cost surface and repeatedly applying
neighborhood moves (such as  random pertur-
bations, greedy moves, etc.) to move to (on
average) increasingly optimal points on the
cost surface. Simulated annealing is a gener-
alization of local search inspired by a physical
metaphor to the process of annealing, in which
moves to less optimal points are taken prob-
abilistically, in accordance with a temperature
schedule. During the early part of the anneal-
ing process, the temperature is high, and
moves to less optimal points are taken more
frequently; as the temperature is decreased, the
probability of rejecting moves to poorer points
on the cost surface increases. The control
points of local search/simulated annealing in-
clude methods for  temperature schedule and
the neighborhood move generator.

Adaptive Problem Solver

Given a spacecraft design optimization prob-
lem instance in the form of a design model,
the adaptive problem solver component of
OASIS selects and configures a metaheuristics
from its suite in order to maximize some util-
ity measure (usually, this is the quality of the
design found by OASIS). In this section, we
motivate our approach to adaptive problem
solving and describe the architecture of the
OASIS adaptive problem solver.

Our approach to adaptive problem solving is
to view it as a meta-level heuristic search
through the space of possible problem solver
configurations, where candidate configura-
tions are evaluated with respect to a utility
measure, and the goal is find a configuration
that maximizes this utility measure. In princi-
ple, it is possible to do a brute-force search
through the space of possible problem solver
configurations. This method is clearly intrac-
table in general, since the number of configu-
rations is exponential in the number of control
points. Consider a problem solver with c con-
trol points, each with v values; there are cv

problem solver configurations. Suppose we
are given a problem instance for which the
black-box simulation runs to evaluate a single
candidate design takes an average of t sec-
onds. If each run of the problem solver on this
instance requires n candidate design evalua-
tions on average, then the expected time re-
quired to search this space using an unguided,
brute force search is O(ntcv).

Given the enormous computational expense of
searching through the space of problem solver
configurations, one might wonder whether the
search should/could be avoided altogether. To
avoid search completely, there are two alter-
natives. The first is to find a super-
metaheuristic that outperforms all others for
all problem instances (and thereby avoid
adaptive problem solving altogether). As dis-
cussed in Section 2, we reject this solution as
infeasible. The second alternative is a syntac-
tic, “lookup-table” approach: classify the
problem instance as a member of some class
of problems, then apply the metaheuristic con-
figuration that is known to work well for this
class of problems. This method can work very
well i f we happen to have studied the class of
problems to which the particular instance be-
longs, and we have available a good technique
for classifying the instance as a member of the
class. This approach, however, is of limited
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utilit y  if we encounter an instance of a class
that we know nothing about, or if we cannot
correctly classify the problem as one that be-
longs to a class for which we have a good
metaheuristic configuration.10 Thus, a purely
syntactic approach does not suffice. An adap-
tive problem solver needs to search the space
of possible metaheuristic configurations—the
challenge is to discover and apply enough
heuristic knowledge to the task to make it
more tractable.

What types of heuristic knowledge are avail-
able to be either acquired from a human, or
through knowledge discovery/machine learn-
ing techniques? We identify three general
classes of knowledge which are applicable in
this context:
• domain-dependent knowledge about the

behavior of metaheuristics in a given do-
main,

• domain-independent, meta-knowledge
about optimization, and

• domain-independent, but system-
dependent structural knowledge.

Each of these types of knowledge are dis-
cussed below:

Domain-dependent knowledge—This includes
knowledge about the structure of particular
classes of problems, and the behavior of meta-
heuristics on particular problem instances or
classes of instances. Examples of heuristics
that can be derive from this type of knowledge
include:

• If a problem instance is in the problem in-
stance class I, then configuration C is
promising;

                                                
10 Indeed, the problems of defining useful notions of
classes of problem instances, and classifying a problem
instance as belonging to some particular class is a
challenging pattern recognition problem in itself.

• If a problem instance i is in the problem
instance class I, then it is likely that its
cost surface is of type S;

• If the behavior of a configuration C is
poor, then the instance is likely to be in in-
stance class I;

• If the cost surface of the instance belongs
to class S, then the instance is likely to be
in instance class I.

In addition, this class includes any knowledge
that can be used to classify a problem instance
as belonging to a particular class of problems,
including pattern classification heuristics that
can be used by a problem instance analysis
module.

Domain-independent knowledge—This is a
formalization of the knowledge that human
optimization experts possess about optimiza-
tion in general. It includes knowledge about
the behavior of metaheuristics on particular
classes of cost surfaces11, and knowledge
about the behavior of metaheuristics in gen-
eral. Classes of cost surfaces can be defined by
attributes such as the number of local minima,
distance relationships between local minima,
etc. Examples of heuristics that can be derived
from this type of knowledge include:

• If a surface of class S, configuration C is
promising;

• If the behavior of a configuration C is
poor, then, configuration C’ is promising;

• Given some features of the observed be-
havior of configuration C, it is likely that
the cost surface is in class S.

 

                                                
11 Note the difference between classes of problem in-
stances, and classes of cost surfaces. Cost surfaces are a
more abstract, and classes of cost surfaces can encom-
pass many classes of problems. For instance, the class
of cost surfaces that are  “bumpy or rugged” includes
cost surfaces from a very large number of classes of
problem instances.
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This class of knowledge may not be as power-
ful as domain-dependent knowledge by itself,
since it is more abstract in nature and more
difficult to apply. For example, analysis of the
cost surface is more computationally expen-
sive than syntactic analysis of the instance,
since it requires expensive runs of the black-
box simulation to evaluate the cost surface.
However, human optimization experts who
may not be domain experts for a particular
problem that they are given must often rely on
their body of domain-independent knowledge,
in combination to what domain-dependent
knowledge they can obtain. The apparent suc-
cess of these optimization experts indicates
that this type of knowledge can be a very use-
ful means of controlling search.

Domain-independent, system-dependent
structural knowledge—It may be possible to
exploit the syntactic structure of the problem
representation in a particular adaptive problem
solver. For instance, in OASIS, for a particular
problem instance, it may be possible to ana-
lyze the structure of its dataflow graph in the
MIDAS methogram to identify, e.g.,  decision
variables that affect a relatively large number
of other nodes in the graph. Hence, it may be
more important to focus on nodes of high de-
gree than a node than a node of low degree. At
this time, it seems that useful knowledge of
this type may be extremely difficult to acquire,
although this is an area of research that seems
particularly interesting from the de-
sign/human-computer interface perspectives,
since it entails the understanding of how engi-
neers structure simulations from a graph-
theoretic point of view.

The various types of knowledge described
above can be applied either directly or indi-
rectly (through chains of inference) as vari-

able/value ordering heuristics12 in a search al-
gorithm that searches the space of  metaheu-
ristic configurations.

We are currently investigating several  alter-
native approaches to representing the knowl-
edge in OASIS. The initial version of the OA-
SIS Adaptive Problem Solver uses Bayesian
networks [20] as its primary knowledge repre-
sentation scheme. Bayesian networks were
chosen primarily due to their clear, probabilis-
tic semantics, the flexibility with which vari-
ous kinds of inferences could be performed,
and the abilit y to seamlessly integrate new
knowledge and observations into the knowl-
edge base either manually (i.e., entered by a
human expert) or automatically (using ma-
chine learning techniques).

In the initial implementation, the Bayesian
networks are manually constructed. A number
of techniques have recently been developed
for learning in Bayesian networks [13]; we are
currently investigating the application of these
techniques. In addition, we are investigating
new approaches to machine learning that take
advantage of the special structure of the adap-
tive problem solving domain. For example,
unlike most other domains, in which all the
training data for machine learning is given to a
learning algorithm by an external source, the
adaptive problem solving domain is interest-
ing in that it is possible for the problem solv-
ing system to perform experiments and gener-
ate new data, using the exact same mecha-
nisms that are used to evaluate metaheuristic
configurations.

An important auxiliary component that is im-
portant for the adaptive problem solving proc-
ess and applicable at various levels of the
OASIS architecture is the hypothesis testing

                                                
12 Variable ordering heuristics guide the choice of con-
trol points to change; value ordering heuristics guide
the choice of control point values to try.
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module. Hypothesis testing is a statistical
problem in which the confidence in the choice
of one belief over another given data is quanti-
fied. When, for example, a metaheuristic is
probabilistic in nature (as is the case with ge-
netic algorithms and simulated annealing), or
the black-box simulation is stochastic, then it
is important to be able to efficiently, accu-
rately test whether one candidate is better than
another (where a candidate can be, e.g., a
metaheuristic configuration or a particular de-
sign). [1] have proposed several efficient
methods for computing within given confi-
dence bounds whether one candidate is better
than another according to some utility meas-
ure; we are currently investigating:
• Extensions to these techniques,
• Integration of these techniques within our

stochastic metaheuristics, and
• Applicability to our new formulation of

adaptive problem solving.

Finally, we make use of parallelism and dis-
tributed processing on networks of worksta-
tions in order to provide the massive compu-
tational requirements of adaptive problem
solving. Currently, processes are distributed
using the Parallel Virtual Machines message
passing package [5] at the black-box simula-
tion level. For example, multiple copies of the
black-box simulation are distributed and are
executed in parallel given different decision
variable assignments (i.e., a number of candi-
date designs are evaluated in parallel).

5. EXAMPLE SPACECRAFT DESIGN OPTI-

MIZATION PROBLEMS

In this section, we describe two specific
spacecraft design optimization problems to
which we are currently applying the OASIS
system. The first is a low-level optimization of
the physical dimensions of a soil penetrator
microprobe. The second is a system-level op-
timization of the configuration of the commu-
nication system of an orbiter spacecraft. These

examples are illustrative of the range of differ-
ent optimization problems that arise in space-
craft design.

The Mars Soil Penetrator Microprobe

As part of the NASA New Millennium pro-
gram, two microprobes, each consisting of a
very low-mass aeroshell and penetrator sys-
tem, are planned to launch in January, 1999
(attached to the Mars Surveyor lander), to ar-
rive at Mars in December, 1999. The probes
will ballistically enter the Martian atmosphere
and passively orient themselves to meet peak
heating and impact requirements. Upon im-
pacting the Martian surface, the probes will
punch through the entry aeroshell and separate
into a fore- and aftbody system. The forebody
will reach a depth of 0.5 to 2 meters, while the
aftbody will remain on the surface for com-
munications.

Each penetrator system includes a suite of
highly miniaturized components needed for
future micropenetrator networks: ultra low
temperature batteries, power microelectronics,
and advanced micro-controller, a microtele-
communications system and a science payload
package (a microlaser system for detecting
subsurface water).

The optimization of physical design parame-
ters for a soil penetrator based on these Mars
microprobe is the first testbed for the OASIS
system. The microprobe optimization domain
in its entirety is very complex, involving a
three-stage simulation:
• Separation analysis (i.e., separation from

the Mars Surveyor),
• Aerodynamical simulation,
• Soil impact and penetration.

To illustrate the utility of adaptive problem
solving, we now briefly describe current work
on a simplified version of the soil penetration
stage.
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Given a number of parameters describing the
initial conditions including the angle of attack
of the penetrator, the impact velocity, and the
hardness of the target surface, the optimization
problem is to select the total length and outer
diameter of the penetrator, where the objective
is to maximize the ratio of the depth of pene-
tration to the length of the penetrator. We
maximize this ratio, rather than simply maxi-
mizing the depth of penetration, since for  the
Mars microprobe science mission, the depth of
penetration should ideally penetrate at least
the length of the entire penetrator).

One of the initial condition parameters that
has a significant impact on the structure of the
cost surface for this optimization problem is
the soil number, which indicates the hardness
of the target surface. Intuitively, one would
expect this to be an important parameter,
since, for example, it is clearly more difficult

to penetrate harder targets (the penetrator
could bounce off the target, for example).

Figures 2 and 3 show plots of sample points
from the cost surface of this simplified pene-
tration problem for two different soil numbers,
soillNum=7 (hard), and soilNum=13 (soft).
The cost surface for soilNum=13 is a rela-
tively smooth surface, while the cost surface
for soilNum=7 is a much more rugged surface
Because of the larger number of discontinui-
ties in the cost surface for soilNum=7, optimi-
zation algorithms are more likely to get stuck
in local maxima in this cost surface. We
would expect that a greedy metaheuristic
would be very successful for the soft surface,
while a successful metaheuristic for the hard
surface would require some mechanism to es-
cape local minima. Therefore, to obtain the
best performance on a similar problem in-
stance (given a different soil number, for ex-
ample), one should choose and configure a
metaheuristic to exploit this knowledge ap-

Figure 2—Sample points from cost surface for soil penetrator microprobe
model. Plot of ratio of depth of penetration to length of penetrator. Soil
number = 13 (soft soil)
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propriately; this process would benefit from
the application of our adaptive problem solv-
ing approach. The soil number is therefore a
problem parameter that the OASIS adaptive
problem solver can use as a feature with which
to classify problem instances (i.e., into prob-
lems with soft and hard soil numbers).

The Neptune Orbiter

Neptune Orbiter is a mission concept currently
being studied under the Outer Planet Orbital
Express program at the Jet Propulsion Labo-
ratory. The goals of the mission are to put a
spacecraft in orbit around Neptune using state-
of-the-art technologies in the areas of tele-
communications, propulsion, orbit insertion,
and autonomous operations. The spacecraft is
expected to arrive at Neptune (30 a.u.) five
years after launch in 2005 using a Delta launch
vehicle. The subsystem requirements include
100 kbps data rate, solar electric propulsion,
solar concentrator power source and a cost of
less than $400M in FY 94 dollars.
For the initial phase of the optimization dem-

onstration, the focus is on the orbital opera-
tions of Neptune Orbiter. The launch and
cruise phases of the mission will be included
in the optimization once the orbiter problem is
well understood.  The driving constraints of
the orbiter problem are the optical communi-
cation aperture, transmit power, and spacecraft
mass. The transmit power is a direct input into
the integrated spacecraft design model. The
other inputs include the science observation
time per orbit and the data compression factor.
The output of the model that is being maxi-
mized is the science data volume per orbit. For
designs in which the spacecraft mass is greater
than 260kg, the data volume output is zero. A
spacecraft with a dry mass of greater than
260kg is too heavy to lift on the target launch
vehicle. Thus the mass limit bounds the opti-
mization problem. Currently, we are using
cost models in conjunction with the simulation
of the orbiter as described above to obtain our
cost function—a quantitative estimate of the
science return (measured in, e.g., volume of
science data obtained per dollar cost of the

Figure 3—Sample points from cost surface for soil penetrator microprobe
model. Plot of  ratio of depth of penetration to length of penetrator. Soil
number - 7 (hard soil).
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spacecraft).

6. SUMMARY AND CONCLUSION

Designing a widely applicable tool for space-
craft design optimization is a significant tech-
nical challenge. In this paper, we have pro-
posed the use of  metaheuristic optimization
algorithms, which are customized for particu-
lar problem instances by a process of adaptive
problem solving. By this, we hope to provide a
design optimization tool that can provide
spacecraft designers with the abilit y to per-
form successful design optimization with
minimal human effort. We have described
OASIS, our current implementation of a sys-
tem based on these principles, and discussed
many of the technical issues that have arisen
in its design. Adaptive problem solving for
spacecraft design is a fertile research area with
significant potential benefits; this paper has
presented our initial efforts in this area.
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