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Abstract— Spacecraft desigogimization is a
difficult problem due to tke complexity of

signing values tX to minimize or maximize
an obective functionF(X), subjet to the @mn-

optimization cost surfaces and the human exstraintsC.

pertise n ogdimization tha is necessarin or-

der to achieve good results. In this paper, w&pacecraft desigopimization is difficult us-
propose the use of a set of generic, metaheirg current optimization methods because:
ristic optimization algorithms (e.g., genetice Currert methods requé a significant
algorithms, simulated annealing), which is amount of manual customizati by the

configured for a particular optimizati prob-
lem by an adaptive problem solver bdsen
artificial intelligerce aad machine learning
techniques. We describe wonk progress on

users in order to be successful, and

e Currert methods are not well suited for
mixed dscrete/continuoys nonsmooth,
and passibly probabilistt cost surfaces

OASIS, a system for adaptive problem solving that can arise in mgrdesig ogtimization

based on these principles.

TABLE OF CONTENTS

INTRODUCTION

OPTIMIZATION USING METAHEURISTICS
ADAPTIVE PROBLEM SOLVING
ASISARCHITECTURE

EXAMPLES OF SPACECRAFT DESIGN
OPTIMIZATION PROBLEMS

SUMMARY AND CONCLUSIONS

aprwdPE

o

1. INTRODUCTION

Many aspects of spacecraft designnche
viewed as instances abnstrainel opimiza-
tion poblems Given a set of decisn vari-
ablesX and a set of constraints on X, the

constraind optimization is the problem of as-

problems.

We ae arrently developing the Optimization
Assistant (OASIS), a tool for automated
spacecraft desigopimization that addresses
these two issues. The goal of OASIS is to fa-
cilitate rapid "what-if" analysis of spacecraft
desin by developing a widgl applicable,
spacecraft desig optimization systen that
maximizes tle aitomaton d the optimization
process and minimizes ehanount of cus-
tomization required by the user.

OASIS consists of an integrated suite of global
optimization algorithms that argpropriate
for non-smodt, pasibly probabilistic, mixed
discrete/continuous cost surfaces, and an in-
telligent agenthat decides how to appthese
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algorithms to a particular problem. Given a
particular spacecraft desig opimization Second, may real-wordd optimization pob-
problem, OASIS performs a meta-level opti-lems areblack-box optimizatin problems in

mization in order to: which the structure of th @wst function is

e Select an appropriate optimization tech-opaque. Thais, it is not possibleat drectly
nique to apply to the problem, and analyze tle @st surface y analytic means in

« Automaticaly adapt (customize) the tech- order to guié an ogtimization algorithm. For
nique to fit the problem. example,F(X) can be computel by a omplex

simulation about which the optimization algo-
The rest of this paper is organized as followstithm has no information (e.g., to evaleia
Sectbn 2 describes th gplication d meta- candidate spacecraft design, we could simulate
heuristc dgorithms b optimization, and its its operations using leggdORTRAN code
problems. In Seath 3, we define the frame- about whit very little is known to the op-
work of adaptive problem solving that we timizer except for its 1/O specifications).
adopt for OASIS ad describe related work in Black-box optimization problems are therefore
the area. Section 4 presents an overview of trghallenging becaes airrenty known algo-
OASIS system architecteirand cescribes our rithms for black-box optimization aressen-
approach to solving th alaptive solving tially "blind" search algorithms—instdacf
problan task. In Sectin 5, we describe two being guided ¥ direct analysis of the cost sur-
spacecraft desig opimization poblems face, thg must sample # st surfaceri or-
which ae arrently being used as testbed ap-der to indirecty obtan usefd information
plications for OASIS: the NAS New Millen-  about the cost surface.
nium DS-2 Mas Microproke and the Neptune

Orbiter spacecratft. Recently, there has been much research activ-
ity in so-calledmetaheuristicalgorithns such
2. OPTIMIZATION USING METAHEURISTICS as smulated annealing [15], tabu search [7,8]

and genet dgorithms [9] for global optimi-
zation. Thes ae loosey defined, "general-
purpose” heuristics for optimization that pro-
ceal by iteratively samplinga st surface,
and thg implement various mechanisms for
escaping local optima. Although tleesigo-
rithms have been showi e successful on
numerous applications vatdfficult cost sur-

Although optimization is a mature field that
has been studied extensivddy researchers,
thee ae a number of open, fundamental
problems in the practical applicati d opti-
mization techniques.

First, the problem of global optimizati on

difficult <_:os_t s_urfaces is pogrlunderstood. faces, the behavior of tresigorithms & dill
The optimizawn d smooth, convex COst n,qry ynderstood. Successful applicati o
functions is well understood, and efficient al'these metaheuristit4o a particular problem
gorithms for optimizabn on these surfaces requires:

r_lavel bea devglope:lt. How;ever, the::]e tradi-, Selection of the most appropriate metaheu-
tional approaches often perform pgooh cost ristic for the problem, and

surfaces with manlocal optima, since they Intelligent configuratbn d the metaheu-

tend to get stuc on local o_pt_lma_. Unfortu- ristic by selecting appropriate values for
nately, mag real-world opgimization pob-

lems have such a "rugged" cost surface and are

thus  difficult p_roblems for traditional ap- In the rest of the paper, we use the termesaheuristic
proaches to optimization. andmetaheuristic algorithninterchangeably.
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various control parameters (e.g., temperawhich shows that over all posstblost sur-

ture moling schedule for simulated an-faces, te expectal performances of all opti-

nealing). mization algorithms & eactly equal. Al-
Currently, successful applications of metaheuthoughit is possible that “all problems of in-
ristics are often the result of an iteratigycle terest” (in our context, all nontrivial spacecraft
in which a researcher or practitioner selectslesign ogtimization pgoblemg reflect a par-
and adjusts a number of different metaheuristicular subset of all possilast surfaces for
tic/control parameter combinations on awhich some metaheuristic configuration’s per-
problem, observes the results, and repeats thisrmance dominates that of all others, we
process until satisfactpresults are obtained. strongly believe that this is ndhe cae.Thus,
This process of selecting and configuring aur assumption throughouhis paper is that
metaheuristic d oltain good results on a to obtain the best performance for a particular
given problem is usualitime-consuming, and problem instanceit is necessary to select a
requires a significant amount of optimizationmetaheurist and configure it so thait
expertise (which is ofte very costly to db- matches the structure of the cost surface of the
tain). As a result, in mancases, ta st of instance
successfull applying metaheuristic tech-
niques on Hack-box problems c¢a be pro- 3. ADAPTIVE PROBLEM SOLVING

hibitivel nsive. _ .
ibitively expensive A natural approach to alleviating this problem

of selecting and configuring a metaheuristic
for particular applications is to automate the
Jrocess. This is an instance of the more ge-
neric, adaptive problem solvingask, which
has been studieby the atificial intelligence
community, where the task is to automatically
configure aproblem solving system (such as
an ogimization system). In tki sction, we
give the standar definition d the aaptive
problem solving task, and review previous ap-
proaches in the literatuteWe the dscuss a
generalizabn d adaptive problem solving,
which is the framework we will adopt for the
metaheuristt goplication problem in space-
craft design optimization.

One might wonder whether there sme su-
per-metaheuristi and a perfect configuration
of this super-metaheuristic, which outperform
all others for all problems of interesor
whetherit is & least possible to characterize
the performance of metaheurestoonfigura-
tions in general. Tén aurrent conventional
wisdam in the optimization research commu-
nity is tha this possibiliy is extreme} un-
likely (although it no likely tha this can ever
be formaly proved, dwe to the empirical na-
ture of the questiorf).This is supportel by
related recentheoretical work such as [24],

? Neverthelessit is not diffict to find in the metaheu-

ristic literatue empirical studies that claim that one Before discussing approaches to adaptive
metaheuristic or an cnfiguration is better than an- proplem solving, we formafl state the stan-
other (e.g., [25] boldly claims that “the objective of this dad definition d the task (as propodeby

paper is...to study the genkr@ndencies of various . .
algorithms,” ad proceeds by comparing the perform- [10,11,12,17,23]. Adaptive problem solving

ance of several metaheuristics on a scheduling probleri€guires —a configurable problem solver,
They conclude: “If obtaining solutions of higher quality meaning the problem solver possesses control
is important, use Simulated Annealing or Greedy Local

Search. Detaild parameter tuning is mamportant for
Simulated Annealing and Greedy Local Seamo- ° The formal statement of the traditional adaptive prob-
vided that sufficient amount of computatibriame is lem solving forumulation and the review of previous
available.” work is based on the treatment in [10].
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decisions thamay be resolved in alternative to be values of control points (e.g., a particular
ways. Givena @nfigurable problem solver, implementabn d an adaptive temperature
PS with several control pointsCP;...CR, schedule is one of the possible values for the
(where each control poi@P, corresponds to a temperature schedul ontrol point for the
particular control decision), and a set of valuesimulated annealing metaheuristic).
for each control poin{M; ..M, }*, a control
strategyis an assignment of values to controlSeveral approaches to adaptive problem solv-
points that defines the overall behavior of theng have bee dscussed in the literature. The
problem solver. LetPSstrat be the problem first, a syntactic approachis to preprocess a
solver operating under a particular controlproblem-solving domain into a nmeficient
strategy. form, based solgl on the domairs g/ntactic
structure. For example, Etzioni’'s STATIC
The qualiy of a problem solving stratggs system analyzes a pati d a planning do-
defined in terms of the decision-theoretic noinain’s deductive closure to conjecture a set of
tion d expectel utility. Let U(PStratd), be @ search control heuristics [3]. Dechter and
real valued utiliy function that is a measure of Pearl descrie a ¢ass of constraint satisfaction
the goodness of the behavior of the problentechniques that preprocess a general class of
solver on a specific problech® Then, tke ex-  problems into a mer dficient form [2]. More
pectal uility can be defined formajt over a recent wok has focusd onrecognizing those
distribution of problem®: structural properties thanfluence tle dfec-
tiveness of different heuristic methods
E[U(PSirad] = z U PSygar 8% dr ¥ [4,14,22]. The goal of this approach s ro-
dm vide aproblem solver with whais essentially
The goal of the gandard formulatn d adap- a big lookup table, specifying wiidheuristic
tive problem solving aa be epressed as: strategy to use baskonsone eaily recogniz-
given a problem distributiorD, find some able syntactic features of a domain. While this
control strategin the space of possible strate-|atter approach seems promising, work in this
gies tha maximizes tle expecta uility of the area $ dill preliminary and has focusé pri-
problem solver. For example, for the problemmarily on artificial applications. The disad-
of configuring a metaheuristic, say, a genetizantage of purgl syntactic techniques is that
algorithm, in a design optimization system, thehey ignore apotentialy important source of
control points include: the population size, thénformation, the distributin o problems.
crossove rate, and the mutation rate, etc.Furthermore, current syntactipproaches to
Utility might be defined as the qualiof the  this problem are specific to a particylaften
design generated by the optimizer. unarticulate, uility function (usualy prob-
lem-solving cost). For example, allowing the
Note that a number of approaches to adaptingtility function b be auser-specifid parame-
control poins sich as the population size of ater would require a significant and problematic
GA [21], have bea proposed in the literature. extension of these methods.
In ou framework, ve cnsider such strategies
The second approach to adaptive problem

“ Note that a method may consist of smaller elements S%olvmg, thegenerative approachs to gener-

that a method may be a set of control rules or a combP® custom-mad(_e heur'St'_CS In response to
nation of heuristics. careful, automatic, analysis of past problem-

° We assume thathe problem solveruns for a finite  solving attempts. Generaéivgpproaches con-
amount of time and eventually terminates.
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sider not on} the structure of the dommibu  and face problems with local optima in the
also structures that arise fnothe problem space of control strategies. Furthermore, they
solver interacting with specific problems fromtypically leaveit to the user to conjecture the
the domain. This approach is exemptifiey = space of heuristic methods (see [19] for a no-
SOAR [16] and PRODIGY/EB [18]. These table exception).

technigues analyze past problem-solving

traces and conjecture heurstontrol rules in A Generalization of Adaptive Problem Solving
responseda particular problem solving ineffi-
ciencies. Such approaches can effecyiet-
ploit the idiosyncratic structure of a domain
through this careful analysis. The limitation of
such approaches is ththey have typical fo-
cusal on generating heuristics in response t
particular problems rad have not addressed
the issue of adapting to a distrilartid prob-
lems welf. Furthermore, as with the syntactic
approaches, thus far thénave bee drected
towards a specific utility function.

The standard formulatn d adaptive problem
solving described above is applicable when we
wart to generag a problem solver that will
perform well for a particular problem distri-
0bution. Thee ae some problems with this
formulation, however, that make it inappropri-
ate for our doma o metaheuristt goplica-
tion for spacecraft design optimization.

First, although the stratgdound ly an adap-
tive problem solver mahave good expected

The third approach is the statistical approac .erfqrmtance OVtir some distriborti (tl‘ grm
These techniques expligitteason about per- emb;ns ancles, e;e IS no ﬁufaran e A
formance of different heuristic strategiesP 02 cm SOIVET PETIOrMS WEI Tor giparticu-

across the distribudn o problems. Thes ae lar Instance. ".1 thg dqmalof desigr optimi-
generaly statistical generate-and-test ap_zatlon, thg ObjeCt'V.e 's often to generate the
proaches that estimatedetlaverage perform- .bESt possible solutlpn for' a.S.pe.C'f'C proplem
ance of different heuristics from a random se .?taf?ce’ S0 ther? is a signifi¢camcompati-

of training examples and expeorn explicit .|I|ty in the objective of the problem formula-
space of heuristics with greedearch tech- tion

glguseéé E[)l(i]m pFI)i\ngf [Sluzﬁh :r}llgt?mas Si;?isigal\l/lSecond,.the.star}d.ard adaptive problem solving
component of MULTI-TAC [19]. Similar ap- formgl_aﬂon !mpllc_lth/ assumes that oplone
proaches ha dso been investigated in the specific configuraton o the problem solver

operations research commuynif26]. These V\i'" be I?)fh“edbt.o ? pgrtltcular pro?ietrl]n-b i
techniques ar eay to use, appy to a variety stance. e objective is to generate the bes

of domains ad uility functions, and aa pro- possible solution for a problem, then ityrze

vide strong statistical guarantees abtheir worthwhile to W. a number of different prob-
performance. The are limited, hovever, as lem solver Coﬁf'gura‘.'of‘s on the protnieln-
they are computationaljy expensive, require stance. n desigh opimization, it is often

mary training examples to idengifa strategy, worthwhlle O \Be massie anounts .Of com-
puting resourcésin arder to make significant

improvements in the qualitof the design,

® While generatie gproaches aa be traind on a  which could leadd benefits that far outweigh
problem distribution, learning typicsll occurs only
within the antext of a single problem. These systems
will often lean knowledge which is helpfuin a par- ' CPU cycles are oftequte deap and readily avail-
ticular problem but decreases utilibverall, necessi- able, given the amount of computation available on idle
tating the use of utility analysis techniques. workstations in many engineering organizations.
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the mmputational resources used to generate

the improvement.

Finally, the problem solver configuration
found ly the standard adaptive problem solv-
ing formulation is useful when evae given a
problem instance thais “typical” of the in-
stances in the distribution for which the prob-
lem solver was configured. Thihowever,
may be of limited utlity if the problem solver
is faced with an instance which is significantly
different from previougl seen instances. This
is a problen in ou domain, since & ae de-
signing a generic desigoptimization tool for

Definition: (Adaptive Problem Solving)—
Let d be aproblem instance. LePStrat
be the problem solver operating under a
particular control strategy. Let
U(PSSTRATtd), be a real valud LII|Ity
function tha is a measure of the goodness
of the behavior of the problem solver @n
The tak of adaptive problem solving is to
find a ontrol strateg for the problem
solver that maximize®(PSstratd). Given

a set of problm instance=dO0, d1,.dn,
the tak of adaptive problem solving is to
find a set of control strategieStratO,
Stratl,... StratNthat maximizes:

which the distribution is virtuallunrestricted.

Ore muld argue thaif an instances suffi- ZU(PSSTRAI’ d

ciently different fran the distribution for dD

which the cnfiguration was optimized, then

this forms the basis for a new distritmation  If we were to trefathe set of instances in the
which to run tle alaptive problem solver definition aboe & being samples drawn from
(where initially, the distribution consists of @ distribution, this formulatn o adaptive
this sngle, new instance). Of course, if we pProblem can be seen as a generabrad the
allow for the possibilif of maintaining multi- standard formulation, withauthe restriction
ple problem solver configurationsore of that
which shoull be selectd depending on the
distribution to which a particular instance be-
longs new subproblems arise thanust be The gproaches for the standard formulation
solved, including: can nov be reevaluated with respgeto the

« Given a new probla instance decide New formulation. In general, if we know of a
which distribution it belongs to. configurationCont tha maximizes expected

« Deciding when/whether to “splitan ex- Ulility over a distributionD of problems to
isting problem distribution into tav or ~ Which a particular instanagbelongs, then one
more distributions when additional prob-Would, by definition, expect (in the probabil-
lems are added to the distribution. istic sense) that configuration perform well

on the instance. Suppose that our approach to

For our problem of metaheuristepplication ~ SOlving the new adaptive problem solving

for design optimization, what is needed then igormulation is to search the space of configu-

a task formulation thftamaximizes the per- rations to find a near-optimal control strategy.

formance for each particular problem instancelnen. a useful heuristic walibe to ty Conp

and does not rglon initial assumptions about fIrSt. Thus, ve can treat solutions to the stan-
the problem distribution from which the in- dard formulation as heuristic solutions for our
stance is drawn. @Uformulation for adaptive formulation of adaptive problem solving.
problem solving is therefore the following:

StratO = Stratl = StratN
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uted design model components together using
a methogram a graphical diagram represent-
4. OASIS ARCHITECTURE ing the data flow of the system. Banock in
OASIS (Optimization Assistant) is an inte-the methogram corresponds to a design model
grated softwae achitecture for spacecraft de- component, which mabe one of 1) a model
sign optimization that supports adaptive in & @mmercial design tool such as IDEAS,
problem solving. The three major component®NASTRAN, or SPICE 2) a program written

of OASIS are: in C, C++ o FORTRAN or 3) an embedded
methogram (i.e., this allows methograms to

e A Spacecraft design model, hawe ahierarchical Structure). |npUt9 hodks

- A suite of configurable metaheuristics, andin the methogram correspond to input pa-

« An adaptive problem solver. rameters for t mponent represented the

node, ad ouputs from a methogram node
We descrie eab of these in the following Correspondd ouput values computeby the

discussion. component. MIDAS is implemented as a
CORBA object, and supports a wide vayiet
Spacecraft Design Model methods that ecabe usel by external client

systems (e.g., a GUI) to manipulate the
The spacecraft design maddes a software methograms.

simulaton d a spacecraft design. The design

modé takes as input decin variables ® be  Thjs last feature of MIDAS (i.e., the CORBA
optimized, ad ouputs @ obective function interface that allows client systems to freely
value, which is assigned as the result of an amanipulate methograms) is particujadseful
bitrarily complex computation (i.e., the simu- for the purposes of designing a black-box op-
lator is ablack-box simulatiopn timization system, since it essentglirovides
the optimization system with a unifarinter-
Thus, the design moblés the mmponent of face for ay design model encapsulated in
OASIS that is the most domain-specific, and isfIDAS. Therefore ou solution to the prob-
provided by the end wsers, i.e., spacecraft de-lem of supporting a wide range of design
signers. h order for an optimization system models is to support an interface to MIDAS.
such as OASIS to be useful in practice, it mustha is, OASIS is designea the an optimiza-

support a wide range of design models, whiclion systen that ca be used @ opimize ay
may consist of models implememteusing MIDAS model.

various languagesn dfferent platforms. tis

not feasible to expect spacecraft 'designers Phus, the design model, which constitutes the
implement their models in a particular lan- yser input to the OASIS sytem, is composed of
guage on a particular platform—if such incon-the following:

venient constraints were the imposed, the . A MIDAS methogran that encapsulates

optimization system will not be udeby the design model,

spacecraft designers. « A list of decisbn variables, as well as
o . ranges of their possible values (mbe

The Multidisciplinay Integrated Design As- continuous or discrete), and

sistant for Spacecraft (MIDAS) [6] is a
graphical design environmernhat allows a
user to integra asystem of possilldistrib-
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Figure 1—Screen shot of a MIDAS methogram (part of the Neptune Orbiter model)

* An ouput from a methogram node thatat runtime. Currently, this consists of a recon-
corresponds the user’s objective functiorfigurable genet dgorithm and a reconfigur-
value® able simulated annealing/local search. These

Figure 1 shows part of a MIDAS methogramare briefly described below

for the Neptune Orbiter model (see Section 5).

Genetic Algorithm—A genetc dgorithm

Metaheuristic Suite works as follows: a populain d sample

points fran the st surface is generated. In a

OASIS includes a set ofonfigurable meta- 055 analogous to biological evolution, this

heuristics which are generic implementations
of metaheuristics that provedan interface for

dynamic reconfiguration of their control points’ The following is a simplified account - there is much
overlgp between metaheuristics, and their boundaries

are unclen (it is often possible to consider one meta-

® The objective function could either be obtain- heuristt & a specialization/generalizati o another).
recty from one of th eisting ouputs in the For example, it is possible to think of some instances of
methogram, or it codl be omputel by adding a new local search as a special case of gerggjorithm with
node that computes, e.g., a weighted linear combinatioa population of 1. For clarity, we present metaheuristics
of some set of output nodes. using their “canonical” descriptions.
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population is evolve by repeatedt selecting Our approach to adaptive problem solving is
(basel onrelative optimality) members of the to view it as a meta-level heuristic search
population fo reproduction, and recombin- through the space of possible problem solver

ing/mutating to generat a new population.
The ontrol points of the genetidgorithm

configurations, wher candidae ®nfigura-
tions ae evaluated with respécto a utility

include: the population size, the methods usetheasure, and the doa find a cnfiguration

for selection, crossover,
(methods include # dgorithm, as well as
their control parameters, such as thée-
guency of application).

Simulated Annealing/Local Searehocal
seart proceeds ¥ generating an initial point
on the st surbce ad repeatedl applying
neighborhood moves (suck aandom pertur-
bations, greegl moves, etc.) to move to (on
average) increasingloptimal points on the

and mutationtha maximizes this utiliy measure.r princi-

ple, it is possible d do a brute-force search
through the space of possible problem solver
configurations. This method is cleaiitrac-
table in general, since the number of configu-
rations is exponential in the number of control
points. Consider a problem solver wittcon-

trol points, each withy values there ae ¢’
problem solver configurations. Suppose we
are given a probha instance for which the
black-box simulation runs to evaleaasingle

cost surface. Simulated annealing is a genecandidate design takes an averaget Gec-

alization of local search inspaedy a physical

onds. If each run of the problem solver on this

metaphor to the process of annealing, in whicinstance requires candidate design evalua-

moves to less optimal points are takgob-

tions on average, thendehepected time re-

abilistically, in accordance with a temperatureguired to search thigpace using @ urguided,

schedule. During # ealy part of the anneal-

brute force search B(ntc).

ing process, the temperature is high, and
moves to less optimal points are taken mor&iven the enormous computational expense of
frequently; as the temperature is decreased, tlsearching through the space of problem solver
probability of rejecting moves to poorer points configurations one might wonder whether the
on the st surface increases. @hontrol search should/codlbe aroided altogether. To
points of local search/simulated annealing inavoid search completely, tleeae two alter-
clude methods fo temperature scheduland natives. The firs is to find a super-
the neighborhood move generator. metaheuristic that outperforms all others for
all problan instances (and therngbavoid
adaptive problem solving altogether). As dis-
cussed in Sedh 2,we rejet this olution as

. . : infeasible. The second alternative is a syntac-
lem instance in the form of a design model

: tic, “lookup-tabk” gpproach: classyf the
gis?iaspglveitsp;%bollecm fsplver com;:orr:ent' (t).fcproblen instarce & a member of soendass
; o onfigures a metaneunstiGs problems, then appkhe metaheuristic con-
from its site in order to maximize some util-

i v, this is th it th figuration tha is known to work well for this
ity measure (usually, this is the qua € Class of problems. This method can weery

well if we happend have studied th dass of
rTbroblems to which the particular instance be-
longs, and we have available a good technique
for classifying the instance as a member of the
class. This approac¢ howvever, is of limited

Adaptive Problem Solver

Given a spacecraft desigpptimization pob-

solving and describe tle achitecture of the
OASIS adaptive problem solver.
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utility if we encounter an instance afdass < If a problen instancei is in the problem
that we know nothing abgutr if we canot instarce dassl, thenit is likely tha its
correctly classify the problem as one that be-  cost surface is of typg

longs toa dass for which we hav agood . |If the behavior ofa wnfiguration C is

metaheuristi configuration®® Thus, a purely poor, then the instance is likeb be in in-
syntactc gpproat dees not sufficeAn ade- stance clask

tive problem solver needs to search the space |f the wst surface of the instance belongs
of possible metaheuristiconfigurations—the to classS, then the instance is liketo be
challenge is @ dscover and appy enough in instance clask

heuristc knowledge to the task to make it

more tractable. In addition, this class includesyaknowledge

o _ that can be used to clagsd problem instance
Wha types of heuristic knowle@gae avail-  as belonging to a particular class of problems,
able b be ather acquired from a humaa including pattern classificath heuristics that

throudh knowledge discovery/machine learn-can be usel by a problen instace aalysis
ing technigues? We idengifthree general module.

classes of knowledge whicheagplicable in

this context: Domain-independent knowledg@his is a

+ domain-dependent knowleegabou the formalizaton o the knowledge that human
behavior of metaheuristics in a giveb-  optimization experts possess about optimiza-

main, tion in general. tl includes knowledg &out

* domain-independent, meta-knowledgethe behavior of metaheuristiaen particular
about optimization, and classes of cost surfa¢és and knavledge

e domain-independent  bu system- abou the behavior of metaheuristics in gen-
dependent structural knowledge. eral. Classes of cost surfaces can be defined by

attributes such as the number of local minima,
Eadh o these types of knowledgae dis- distance relationships between local minima,
cussed below: etc. Examples of heuristics that can be derived
from this type of knowledge include:
Domain-dependent knowledgd his includes
knowled@g &@ou the structure of particular « If a surface of clas§, configurationC is
classes of problems, and the behavior of meta- promising;
heuristicson particular problen instances or « |f the behavior ofa wnfiguration C is
classes of instances. Examples of heuristics poor, then, configuratio@’ is promising;
that can be derive from this type of knowledge Given some features of the obsetvae-
include: havior of configuratiorC, it is likely that
the cost surface is in claSs
* If a problen instance is in the probtein-
starce dass |, then configurationC is
promising;

" Note the difference betweeslasses of problem in-
stancesandclasses of cost surfacgsost surfaces are a
more astract, and classes of cost surfaces can encom-
' Indeed, the problems of defig useful notions of pass many classes of problems. For instaneed#éiss
classes of problem instances, and classifying a problewf cost surfaces that are “bpsnor rugged” includes
instarce & belonging to some particular class is acost surfaces from a very large number of classes of
challenging pattern recognition problem in itself. problem instances.
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This class of knowledge maot ke & power- able/value ordering heuristiésn a search al-
ful as domain-dependent knowledgg itself,  gorithm that searches the spack metaheu-
sinceit is moe dstrat¢ in nature and more ristic configurations.

difficult to apply. For example, analysis of the

cost surface is mer @mputational}y expen- We ae airrently investigating sevetla alter-
sive than syntaati analysis of the instance, native gproaches to representing the knowl-
since it requires expensive runs of the blackedge in OASIS. The initial version of the OA-
box simulation to evaluate éhmst surface. SIS Adaptive Problem Solver uses Bayesian
However human ogimization experts who networks [20] as its primgiknowledge repre-
may not be domain experts for a particularsentation scheme. Bayesianetworks were
problem that thegare given must often iebn  chosen primanjl due to their clear, probabilis-
their body of domain-independent knowledge, tic semantics, the flexibilt with which vari-

in combination to what domain-dependentous kinds of inferences callbe performed,
knowledge thg can oltain. Tre gparent suc- and tlhe &ility to seamlesyl integrate new
cess of these optimization experts indicateknowledg and olservations into the knowl-
tha this type of knowledg can be avery use- edge bas aether manual (i.e., enterd by a

ful means of controlling search. human expert) or automaticall(using ma-
chine learning techniques).
Domain-independent, system-dependent

structural knowledge# may be possible to In the initid implementation, the Bayesian
explat the syntactic structure of the problemnetworks are manugliconstructed. A number
representation in a particular adaptive problenof techniques have recepntbean developed
solver. For instance, in OASIS, for a particularfor learning in Bayesian networks [13]; we are
problan instance,t may be possible to ana- currently investigating tle gplication d these
lyze the structure of its dataflow graph in thetechniques. In addition, evae investigating
MIDAS methogran to identify, e.g, decision new approaches to machine learning thale
variables that affect a relatiyelarge number advantage of the special structure ad #lap-
of other nodes in the graph. Hengemay be tive problem solving domain. For example,
more importahto focuson nocds of hidn de- unlike most other domains, in whichl ahe
gree than a node than a node of low degree. Ataining data for machine learning is given to a
this time, it seems that useful knowledge otfearning algorithm ¥ an external source, the
this type mg be extremsl difficult to acquire, adaptive problem solving domain is interest-
although this is an ared research that seemsing in tha it is possible for the problem solv-
particularly interesting fron the de- ing systen to perform experiments angener-
sign/numan-computer interface perspectivesate new data using the exact same mecha-
since it entails the understanding of how enginisms that are used to evaluate metaheuristic
nees dructure simulations from a graph- configurations.
theoretic point of view.

An important auxiliay componettha is im-
The various types of knowledge describegortant for tle alaptive problem solving proc-
abowe can be @plied either direcyl or indi- ess and applicabl & various levels of the
rectly (through chains of inference) as vari-OASIS architecture is the hypothesis testing

2 Variable orderg heuristics guide t choice of con-
trol points to change; value ordegi heuristics guide
the choice of control point values to try.
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module. Hypothesis testingis a statistical examples are illustrative of the range of differ-
problem in which tb @mnfidence in tk dioice ent optimizatbn groblems that arise in space-
of one belief over another given data is quantieraft design.

fied. When, for example, a metaheuristic is

probabilistic n nature (as is th cae with ge- The Mars Soil Penetrator Microprobe

netic dgorithms and simulated annealingy
the black-box simulationsidochastic, then it
is importann to be ale to efficiently, accu-
rately test whether one candidate is better tha

th h i .g.
anothe (where a cadidae ca be, eg., a (attached to the Mars Surveyor lander), to ar-

metaheuristt configuraton a a particular de- :
sign). [1] have proposed several efficient v ° 4 Mars in December1999.The probes

methods for computing within given confi- will ballistically enter the Martian atmosphere
dence bounds whether @andidate is better and FHSS'VW oriert themsglves to meet pe‘f’"‘
than another according to some uilineas- €aling and impact requirements. Upon im-
ure: we are currently investigating: pacting the Martian surface, the probes will
. Extensions to these techniqueé punch through the entaeroshell and separate
* Integraton d these techniques ,witthliou into a fore- and aftbgdsystem. The forebody
stochastic metaheuristics. and will reach a depth of 0.5 to 2 meters, while the

) . . aftbody will remain on the surface for com-
* Applicability to ou new formulaton o g

. . munications.
adaptive problem solving.

As part of the NA8S New Millennium pro-
gram, two microprobes, each consisting of a
yery low-mass aeroshell and penetrator sys-
tem, are planned to launch in Janyat999

Each penetrator syste includes a suite of
tributed : works of kst highly miniaturized components needed for
ributed processingon retworks ol worksta- ¢y, rq micropenetrator networks: ultra low

tlo_ns h order .D provide the masss ompu- temperature batteriepover microelectronics,
tational requirements of adaptive problem

Vi C tI distribut dand advanced micro-controller, a microtele-
solving. Lurrently processes are distributed ¢,y njcations system and a science payload
using the Parallel Virtual Machines messag

passing package [}t ahe black-box simula- %ackage (a microlaser system for detecting

. . . subsurface water).
tion level. For example, multiplmpies of the

black-box _simulation are distributed qn_d arery o optimizaton o physical desig parame-
exe_cuted n_parallel gven diferent decision _ters for a soil penetrator basenthese Mars
variabk :_55|gnments (e, a_number of Car]d"microprobe is the first testbed for the OASIS
date designs are evaluated in parallel). system. The microprobe optimizati damain

in its entirey is vely complex, involving a
three-stage simulation:

» Separation analysis (i.e., separation from
In this wction, we describe two specific  the Mars Surveyor),

spacecraft desig ogtimization poblems to ¢ Aerodynamical simulation,

which we ae arrently applying the OASIS < Soil impact and penetration.

system. The first is a low-level optimization of

the physical dimensions of a soil penetratoifo illustrate the utily of adaptive problem
microprobe. The second is a system-level opsolving, we now brieft descrile arrent work
timization d the configuraton d the @mmu- on a simplifie verson d the soil penetration
nication system of an orbiter spacecraft. Thesstage.

Finally, we make use of parallelisnmch ds-

5. EXAMPLE SPACECRAFTDESIGNOPTI-
MIZATION PROBLEMS
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Figure 2—Sample points from cost surface for soil penetrator microprobe
model. Plot 6 ratio of dept dof penetration to lengt of penetrator. Soil
number = 13 (soft soil)

to penetrate harder targets (the penetrator
Given a number of parameters describing theould bounce off the target, for example).
initial conditions including ta angle of attack
of the penetrator, the impact velocity, and thd-igures 2 ad 3 show plots of sample points
hardness of the target surface, the optimizatioftom the st surface of tisi Smplified pene-
problem is to seletthe totd length ad ouer tration problem for two different soil numbers,
diameter of the penetrator, where the objectiveoillNum=7 (hard), andsoilNum=13 (soft).
is to maximize the rati of the deplh of pene- The @st surface forsoilNum=13is a rela-
tration to the lendt of the penetrator. We tively smooth surface, while ¢hmst surface
maximize this ratio, rather than sigphaxi- for soilNum=7is a much more rugged surface
mizing the dept o penetration, since fothe Because of the larger number of discontinui-
Mars microprobe science mission, the depth dies in the st surface fosoilNum=7, optimi-
penetration should idegllpenetrag@ & least zation algorithms are more liketo get stuck
the length of the entire penetrator). in local maxima in this cost surface. We

would expet that a greeg metaheuristic
One of the initial condioin parameters that would be vey successful for the soft surface,
has a significant impact on the structure of thevhile asuccessful metaheuristic for the hard
cost surface for this optimizatn pgoblem is  surface would require some mechanmi® es-
the soil number, which indicates the hardnessape local minima. Thereforep toltain the
of the target surface. Intuitivelyore would best performance on a similar prablein-
expet this © be ar important parameter, stance (given a different soil number, for ex-
since, for examplet is cleary more difficult ample) ore should choas and configue a

metaheuristic to expib this knowledg -
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propriately this process wodl benefit from onstration, the focus is on the orbital opera-
the gplication d our adaptive problem solv- tions of Neptune Orbiter. The launch and
ing approach. The soil number is theref@ cruise phases of the mission will be included
problem parameter thadhe OASIS adaptive in the optimization once the orbiter problem is
problem solver can use as a feature with whiclvell undersbod. The driving constraints of

to classiy problem instances (i.e., intprob- the orbiter problem are the optical communi-

lems with soft and hard soil numbers). cation aperture, transmit power, and spacecraft
mass. The transmit power is a direct input into
The Neptune Orbiter the integrated spacecraft design model. The

other inputs include the science observation
Xime per orbit and the data compression factor.
The output of the modléha is being maxi-
mized is the science data volume per orbit. For
designs in which the spacecraft mass is greater
Shan 260lg, the data volume outpis zero. A
spacecraft with a grmass of greater than
260kg is bo heaw to lift on the targelaunch

Neptune Orbiter is a mission concept currentl
being studid uncer the Outer Planet Orbital
Express programtahe Jet Propulsion Labo-
ratory. The goals of the mission are fiu a
spacecraft in orbit around Neptune using stat
of-the-at technologies in th aeas of tele-
communications propulson, abit insertion,

and autonomous operations. The spacecsaf : - .
) ) vehicle. Thus the mass limit bounds the opti-
expected to arriz @ Neptune (30 a.y.five P

: : ization lem. rrently, in
years after launch in 2005 using a Delta IauncE1lzalo oblem. Currently, w ae using

: . . ost models in conjunction with the simulation
vehicle. The subsystem requirements |nclud(8f the orbiter as described abowedtain our
100 kbps data rate, solar electric propulsio

| rat q ¢ of Meost function—a guantitatev estimate of the
Tezgrtﬁ::(;ez{(])(r)?\ﬂoirono\\(Ng;, Z“;ﬁ;?s a @Stot  science return (measured in, .e.gdume of
T . science data obtaideper dollar cost of the

For the initial phase of the optimizati dem- Pe

!
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Figure 3—Sample points from cost surface for soil penetrator microprobe
model. Plot 6 ratio of deph of penetration to lengt of penetrator. Soil
number - 7 (hard soil).
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spacecratft).
[4] D. Frost and R. Dechter. “In search of the best con-

straint satisfaction search,” Proceedings of National

6. SUMMARY AND CONCLUSION Conf. Artificial Intelligence (AAAI)1994.

DeSIQnmg a W.Idg'{ appllc_able _tOO.l .for space- [5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.
Craft desig optlmlzatlo_n is a significantech- Manchek, and V. SunderanRVM: Parallel Virtual
nical challenge. In this paper, we have promachine -a user's guide and tutorlafor networked
posed the usefo metaheuristic optimization parallel computingMIT Press, 1994.
algorithms, which a& austomized for particu-

[6] J. George, J. Peterson, and S. Southard.

lar pIrOblem lln.Stanceﬁ_joa prﬁcess of ada_ptlve “Multidisciplinary Integrated Design Assistant for

prot_) em solving. g this, we hope to prov_lde & sSpacecraft (MIDAS),”  InProceedings of American

desigqn optimization tod that ca provide nstitute of Aeronautics anistronautics (AIAA)1995.

spacecraft designers withethebility to per- _

form successful desig optimization with [7] F. Glov_er. “Tabu sea_rch - part’ IOperations R?'

minimal human effort. We have described>®3'® S®iety of America (ORSA) J. Computing
. . 1:190-206, 1989.

OASIS ou currernt implementatbn d a sys-

tem basd on these principles, ral dscussed [g] F. Glover. “Tabu search - part liQperations Re-

mary of the technichissues that havaisen searh Saiety of America (ORSA) J. Computjirgy4-

in its design. Adaptive problem solving for 32, 1990.

spacecrait design is a fertile research area W"ﬂa] D. Goldberg.Genetic Algorithms in Search, Optimi-

significant potential benefitsthis paper has zation and Machine Learning\ddison-Wesley, 1989.
presented our initial efforts in this area.
[10] J. Gratch and S. Chien. “Adaptive problem-solving
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