
A Comparative Study of Search and Optimization Algorithms

for the Automatic Control of Physically Realistic ��D

Animated Figures

Alex Fukunaga�

Harvard University

Jon Christensen

Harvard University

J� Thomas Ngo�

Harvard University

Joe Marks�

Digital Equipment Corp�

�Current a�liation� Computer Science Dept�� University of California� Los Angeles� CA�
�Current a�liation� Interval Research Corp�� Palo Alto� CA�
�Current a�liation� Mitsubishi Electric Research Labs� Cambridge� MA�



Abstract

In the Spacetime Constraints paradigm of animation� the animator speci�es what a charac�
ter should do� and the details of the motion are generated automatically by the computer�
Ngo and Marks ���� ��� recently proposed a technique of automatic motion synthesis that
uses a massively parallel genetic algorithm to search a space of motion controllers that gen�
erate physically realistic motions for �D articulated �gures� In this paper� we describe an
empirical study of evolutionary computation algorithms and standard function optimization
algorithms that were implemented in lieu of the massively parallel GA in order to �nd a sub�
stantially more e�cient search algorithm that would be viable on serial workstations� We
discovered that simple search algorithms based on the evolutionary programming paradigm
were most e�cient in searching the space of motion controllers� �

�Portions of this report have been presented previously ��� ���



� Introduction

Computer animation has traditionally been a tedious and time�consuming process� In most
current computer animation systems� the animator is given minimal assistance from the
computer� For example� key�framing is the most common method for generating animations
�	�
 in computer�assisted key�frame animation the animator speci�es a character�s con�gu�
ration at key points in time� and the computer interpolates the intermediate con�gurations
between the key frames� This method su�ers from two major problems


� the level of automation is minimal� and

� it is di�cult to achieve physically realistic �and therefore visually plausible� animation
with interpolation methods�

Automatic motion synthesis for articulated �gures is the problem posed by the Space�
time Constraints �SC� paradigm for animation proposed by Witkin and Kass �����

In the SC paradigm� the animator speci�es


� the physical structure of the character


� the actuators that control the character�s internal con�guration
 and

� criteria for evaluating the character�s motion�

The computer is expected to automatically generate a physically realistic and realizable
trajectory for the character that is near optimal� with respect to the criteria given by the
animator�

SC problems have two properties which make them di�cult to solve


� The solution space is multimodal � the number of locally optimal trajectories a
character can follow is exponential� and many are far from the global optimum� In
addition� there may be many dissimilar solutions that are near the global optimum�

� The search space is discontinuous � small changes in the behavior of a character �i�e��
the operation of its actuators� can result in large changes to the trajectory it follows�

Early motion�synthesis algorithms avoid the di�culties of global optimization by set�
tling for some form of local optimization
 an initial trajectory �provided by the animator� is
subjected to perturbation�based local optimization ���� �� ��� However� local optimization
left the animator with the di�cult task of supplying a reasonable initial trajectory�

Recently� a new approach to the motion�synthesis problem was proposed ���� ��� ����
In this approach� the goal is not to compute the �gure�s trajectory directly� but instead to
generate a motion controller that� when executed in a simulated physical environment� will
produce the desired motion� The key aspects of any particular embodiment of this approach
are

�This problem is NP�hard� so guaranteed optimality is too di�cult a requirement�



� how the motion controller is represented
 and

� how the space of possible controllers is searched�

Ngo and Marks ���� ��� proposed an algorithm in which the controller is represented as
a bank of mutually independent stimulus�response �SR� rules
 we shall refer to this kind of
controller as a banked stimulus�response �BSR� controller� Information from the physical
environment is used to determine which rule is active at any given time in the physical
simulation� The space of possible BSR controllers is searched using a massively parallel
genetic algorithm�

While this approach is successful� a major shortcoming is the expense of the search
algorithm
 �nding a simple motion controller for a �ve�rod articulated �gure took ���	�
minutes on a ���	 processor CM�� Connection Machine� If the approach is to be of practical
value� a more e�cient search algorithm is required�

The goal of our research is to explore search algorithms that would be viable on
workstation�class serial machines� We present a study of optimization algorithms for search�
ing the space of BSR controllers� comparing the various algorithms empirically on several
SC problems�

� The Motion Synthesis Algorithm

This section brie�y describes the BSR controller representation and massively parallel GA
used by Ngo and Marks in their motion synthesis algorithm ���� ����

��� The BSR Controller Representation

A BSR controller governs a vector ���t� of joint angles� given information about the physical
environment in the form of a vector �S�t� of sense variables� Sample sense variables for an
articulated �gure are listed in Table ��

��� ��� � � � � �n�� Joint angles
f�� f�� � � � � fn�� Contact forces at rod endpoints

ycm Height of center of mass
�ycm Vertical velocity of center of mass

Table �
 Components of the vector �S of sense variables for an n�rod articulated �gure�

The controller contains N stimulus�response rules� Every rule i is speci�ed by stim�
ulus parameters �Slo�i� and �Shi�i�� and response parameters ����i� and � �i�� Based on the
instantaneous value of the sense vector �S�t�� exactly one rule is active at any one time� In
particular� each rule i receives a score based on how far the instantaneous sense vector �S�t�
falls within the hyperrectangle whose corners are �Slo�i� and �Shi�i�� The highest�scoring rule



Set iactive to �
for t � � to tmax

Cause joint angles ���t� to approach ����iactive	
with time constant � �iactive	

Simulate motion for time interval t

Measure sense variables �S�t�

Possibly change iactive� based on �S�t�
end for

Assign the controller a �tness value based on
how well the simulated motion meets the
animator
supplied task criteria

Fig� �� Pseudocode for a BSR controller�

is said to be marked active� �If �S�t� is not inside the hyperrectangle associated with any
rule� the rule active in the previous time step remains active�� The joint angles ���t� are
made to approach the target values ����iactive� prescribed by the active rule iactive� Figure �
summarizes how a BSR controller behaves and is evaluated�

��� The Massively Parallel Genetic Algorithm

Ngo and Marks� original motion synthesis algorithm used a massively parallel GA to search
the space of possible BSR controllers� In this algorithm� shown in Figure �� each candidate
solution� or genome� was assigned to a single processor� and each generation of genomes was
evaluated in parallel� The details of the initial randomization and mate selection� crossover�
and mutation� which are speci�c to this application� are described elsewhere ���� ����

The evaluation function used to measure the �tness of a candidate solution was speci�c
to each class of SC problem� For example� in an instance of a SC problem in which the ob�
jective was to generate an articulated �gure that jumped as high as possible� the evaluation
function could be a function of the highest altitude achieved by the �gure�s center of mass�

Although it �rst seemed that the match between the genetic algorithm and SIMD
massive parallelism was ideal� the issue of suitability is more complex� Ngo and Marks
observed some incompatibilities between the CM�� architecture and the motion synthesis
algorithm that made the search algorithm ine�cient �����

� Newly Implemented Search Algorithms

We now detail the search algorithms explored in this study�



do parallel

Randomize genome
end do

for generation � � to number of generations
do parallel

Evaluate genome
Select mate genome from a nearby processor
Cross genome with mate genome
Mutate new genome

end do

end for

Fig� �� A parallel GA�

for evaluation � � to number of evaluations
Randomly generate a new genome
Evaluate the new genome
if the new genome is better than best genome then
Set best genome � new genome

end if

end for

Fig� �� Random generate and test �RG
T��

��� Random Generate and Test

As a baseline benchmark� we implemented a simple random generate�and�test �RG�T�
algorithm� which randomly generates a speci�ed number of BSR controllers� evaluates their
�tnesses� and selects the best controller generated �Figure ���

��� Genetic Algorithms

Because of the success of the massively parallel GA� the �rst serial algorithms we imple�
mented were genetic algorithms� distinguished from EP algorithms by the use of a crossover
operator to recombine parameters among members in an evolving population of solutions�

����� Implementation of Genetic Operators

Both the crossover and mutation operators were tailored to �t the BSR representation�



Initialize population
for generation � � to number of generations
Evaluate each genome in population
for i � � to �size of population � ��
Select two parent genomes by roulette
wheel selection
Cross 
 mutate to generate two child genomes

end for

Replace old parent population with new child population
end for

Fig� �� A generational
replacement GA �GGA��

Crossover When two individuals are mated� two children are generated� One child�
designated a hybrid� is a product of crossover between the two parents� The other is an
exact copy of one of the parents �selected randomly��� Crossover between two genomes
begins by creating a random �
� mapping between their stimulus�response pairs� Each
stimulus�response pair is crossed with the one to which it is mapped� using a crossover
operator tailored to this application �����

Mutation Mutation perturbs a genome to which it is applied in two ways� One SR
pair is subjected to creep� i�e�� each of the parameters in that SR pair is changed by a small
amount� Another SR pair is randomized from scratch� with the constraint that at least one
corner of the new stimulus hyperrectangle coincide with the original trajectory through the
multidimensional space de�ned by the stimulus senses�

����� Generational Replacement GA

The generational�replacement genetic algorithm �GGA� is characterized by the replacement
of the entire population of genomes at each iteration� In our implementation �Figure ���
parent genomes are selected using roulette�wheel selection ���� in which the probability of
a genome being selected for mating is proportional to its �tness� Two child genomes are
produced from the parents� One child� randomly chosen� is the hybrid result of a crossover
operation between the parents� and the other child is a copy of one parent� Both child
genomes next undergo mutation� When the population of child genomes has been generated�
it completely replaces the population of parent genomes� except for the best member of each
generation� which is carried over to the next generation without modi�cation by elitism�
Of the algorithms presented in this study� this is the most similar to the massively parallel
algorithm used by Ngo and Marks� although there are no analogues to the localized mating
scheme and hill�climbing random initialization used in the parallel algorithm�

�This asymmetric mating strategy yielded better results than a symmetric strategy in which both o�spring
were hybrids�



Initialize population
Evaluate each genome in population
Rank order the population
for evaluation � � to �number of evaluations � ��
Select two parent genomes by linear rank
based selection
Cross 
 mutate to generate two child genomes
Evaluate the two child genomes
Insert child genomes in order into population
Delete two lowest
ranked genomes in the population

end for

Fig� �� A steady
state GA �SSGA��

����� Steady�State GA

Unlike a GGA� a steady�state genetic algorithm �SSGA� uses an overlapping population in
which only a small fraction of the population is replaced during each iteration� Previous
researchers have reported that SSGAs outperform �in terms of speed on serial hardware�
their generational counterparts in many applications ���� The advantage of a SSGA is that
newly generated individuals with high �tnesses are immediately available to take part in
reproduction� rather than having to wait a complete generation until they become part of
the mating pool�

The SSGA we used �Figure �� uses a technique called linear rank�based selection ��	��
The population is sorted according to �tness� and probabilities for being selected for re�
production are assigned based on the rank of the individual in the population� ensuring
constant selective pressure throughout the search� A linear function is used to allocate
reproductive trials� according to a user�de�ned bias� A bias of ���� for example� means that
the top�ranked individual is ��� times more likely to reproduce than the median individual
in a population� At each iteration� two parent genomes are selected according to this selec�
tion scheme and mated� producing two child genomes just as in the GGA� They are then
inserted into the population according to their �tness� Thus� a maximum of two genomes
will be replaced during each iteration�

����� Distributed GA

In a distributed genetic algorithm �DGA� ����� large populations are subdivided into smaller
subpopulations or demes� A GA is executed independently for each deme� and the demes
interact periodically by periodic migration of individuals among demes� This model maps
naturally to a distributed workstation cluster� but also works well in single�machine serial
architectures because there is very little overhead for subdividing a large population into
demes� Tanese ���� has shown that DGAs implemented on serial machines outperform single
population GAs� even in the absence of parallelism� and refers to this as the superlinear



Initialize all demes
Evaluate each genome in population
Rank order each deme
for evaluation � � to �number of evaluations � ���number of demes��
for each deme
Insert any inbound migrants into deme
Select two parent genomes by linear rank
based selection
Cross 
 mutate to generate two child genomes
Evaluate the two child genomes
Insert child genomes in order into population
Delete two lowest
ranked genomes in the population
With small probability
Select two migrant genomes by linear rank
based selection
Send copies of migrant genomes to randomly selected deme

end for

end for

Fig� �� A distributed GA �DGA��

speedup phenomenon of distributed GAs� The improved performance of a DGA is believed
to be due to niching caused by reproductive isolation between demes�

In our DGA �Figure 	�� a SSGA identical to the one described above in Section �����
is executed for each deme� A migration operator is used with small probability to establish
gene �ow among the isolated demes�

��� Evolutionary Programming Algorithms

����� Evolutionary Programming

Evolutionary programming �EP� ��� �� is a class of evolutionary computation algorithms
that can be distinguished from genetic algorithms primarily by the lack of crossover and
other genetic operators� EP� �Figure �� and EP� �Figure �� are EP algorithms that are
based directly on our previously described generational and steady�state genetic algorithms�
respectively� They di�er from their GA counterparts only in that the crossover operator is
never applied� while the mutation operator is applied with probability ��

����� Stochastic Hill Climbing

Stochastic hill climbing �SHC� is the simplest possible EP algorithm �Figure ��� A single
initial solution is perturbed randomly at each iteration� using the mutation operator used
in the genetic algorithms �but with a probability of � that the operator is applied�� The
resulting child genome is evaluated and compared to the original genome� and the better



Initialize population
for generation � � to number of generations
Evaluate each genome in population
for i � � to size of population
Select a parent genome by roulette
wheel selection
Mutate to generate a child genome

end for

Replace old parent population with new child population
end for

Fig� �� Evolutionary programming �EP���

Initialize population
Evaluate each genome in population
Rank order the population
for evaluation � � to number of evaluations
Select a parent genome by linear rank
based selection
Mutate to generate a child genome
Evaluate the child genome
Insert child genome in order into population
Delete the lowest
ranked genome in the population

end for

Fig� �� Evolutionary programming �EP���



Initialize and evaluate a single genome
for evaluation � � to number of evaluations
Randomly perturb the genome
Evaluate the new genome
if the new genome is better than the old one then
Replace the old genome with the new one

end if

end for

Fig� �� Stochastic hill climbing �SHC��

genome is selected as the parent genome for the next iteration� A likely problem with this
simple algorithm is that it is easy for the search to be trapped at a local optimum�

����� Stochastic Population Hill Climbing

The stochastic population hill climbing �SPHC� algorithm �Figure ��� improves on the
SHC algorithm by using a population of solutions to add robustness to the search� How�
ever� rather than applying selection to the population at every iteration� as is commonly
done with an EP algorithm� each member independently undergoes stochastic hill climbing�
Periodically� a reseeding operator is applied which selects the top half of the population
and copies them into the bottom half of the population� refocusing the search on the most
promising genomes in the population�

� Experimental Study

A study was designed to evaluate the performance of the newly implemented serial algo�
rithms� For animation applications� the visual quality and physical realism of the trajecto�
ries found by the searches is the ultimate measure of performance� However� these subjective
metrics are not easily obtainable� We therefore used the �tness values calculated by the
evaluation function as an objective measure of success�

Each of the serial algorithms described in Section � was tested on �ve di�erent instances
of the SC problem �see the appendix for a description of these problems�� Each algorithm
was run until the evaluation function was executed ������ times� For example� in the
case of the GGA� this means that if the population size was ���� then ��� generations
were executed� On the other hand� for a SHC� the initial individual was subjected to
������ random perturbations� The number ������ was chosen based on early trials that
indicated that controllers that generated high�quality motions could be generated within
������ evaluations�

Based on performance on early� small�scale experiments� each algorithm was tested



Initialize population
Evaluate each genome in population
for generation � � to number of generations
for each individual genome in the population
Randomly perturb the genome
Evaluate the new genome
if the new genome is better than the old one then
Replace the old genome with the new one

end for

if �generation mod reseed interval� � � then
Rank order the population
Replace bottom ��� of the population with top ���

end if

end for

Fig� ��� Stochastic population hill climbing �SPHC��

using several sets of promising control parameters �Table ��� In Table �� the crossover and
mutation rates refer to the probability that the operators were applied to a given genome�
The migration operator is the probability that outbound migrants were generated out of
a particular deme� The reseed interval is the number of generations between reseeding
operations in the SPHC algorithm� where a generation is a number of evaluations equal to
the size of the population�

For each experimental group �an algorithm � control parameter set�� each experiment
was repeated �� times� and the average performance was calculated�

� Results

��� Comparison of Serial Algorithms

Figures �� through �� present the performances �as measured by the �tness values of the
best individuals evaluated over time� of a representative group from each algorithm for each
of the �ve SC problems� The groups selected to be shown are the groups that performed
the best overall in all �ve of the test�suite problems�

From the �gures� the following general observations can be made


� The EP algorithms outperformed everything else� In particular� the SPHC algorithm
consistently yielded the best results�

� All the EC algorithms outperformed RG�T�

� The SHC algorithm performed very well in the beginning� but its progress tapered
o�� and was consistently outperformed by the SPHC algorithm�



Experimental Mutation Crossover Migration Reseed

Group Population Rate Rate Rate Interval

RG
T N�A N�A N�A N�A N�A
GGA
� ��� ��� ��� N�A N�A
GGA
� ��� ��� ��� N�A N�A
SSGA
� ��� ��� ��� N�A N�A
SSGA
� ��� ��� ��� N�A N�A
DGA
� � � �� ��� ��� ���� N�A
DGA
� � � �� ��� ��� ����� N�A
DGA
� � � ��� ��� ��� ���� N�A
DGA
� � � ��� ��� ��� ����� N�A
EP�
� �� ��� N�A N�A N�A
EP�
� �� ��� N�A N�A N�A
EP�
� �� ��� N�A N�A N�A
EP�
� �� ��� N�A N�A N�A
SHC � ��� N�A N�A N�A
SPHC
� �� ��� N�A N�A ���
SPHC
� �� ��� N�A N�A ���
SPHC
� �� ��� N�A N�A ���
SPHC
� �� ��� N�A N�A ���
SPHC
� �� ��� N�A N�A ���

Table �� Key parameters�

0

1

2

3

4

5

10000 20000 30000 40000

F
itn

es
s 

(m
ea

n 
of

 1
0 

ru
ns

)

Individuals Evaluated

RG&T
GGA-2

SSGA-2
DGA-2
EP1-2
EP2-2

SHC
SPHC-2

Figure ��
 Comparative performance of the algorithms� Sarah Sigma Problem �n����



0

1

2

3

4

5

6

7

8

10000 20000 30000 40000

F
itn

es
s 

(m
ea

n 
of

 1
0 

ru
ns

)

Individuals Evaluated

RG&T
GGA-2

SSGA-2
DGA-2
EP1-2
EP2-2

SHC
SPHC-2

Figure ��
 Comparative performance of the algorithms� Willy Worm Problem �n����

0

1

2

3

4

5

6

7

10000 20000 30000 40000

F
itn

es
s 

(m
ea

n 
of

 1
0 

ru
ns

)

Individuals Evaluated

RG&T
GGA-2

SSGA-2
DGA-2
EP1-2
EP2-2

SHC
SPHC-2

Figure ��
 Comparative performance of the algorithms� Beryl Biped Problem �n����



-0.5

0

0.5

1

1.5

2

2.5

3

3.5

10000 20000 30000 40000

F
itn

es
s 

(m
ea

n 
of

 1
0 

ru
ns

)

Individuals Evaluated

RG&T
GGA-2

SSGA-2
DGA-2
EP1-2
EP2-2

SHC
SPHC-2

Figure ��
 Comparative performance of the algorithms� Mr� Star�Man Problem �n����

-1

0

1

2

3

4

5

6

10000 20000 30000 40000

F
itn

es
s 

(m
ea

n 
of

 1
0 

ru
ns

)

Individuals Evaluated

RG&T
GGA-2

SSGA-2
DGA-2
EP1-2
EP2-2

SHC
SPHC-2

Figure ��
 Comparative performance of the algorithms� Five�Rod Fred Problem �n����



� There is no consistent trend in performances among the genetic algorithms �i�e� GGA�
SSGA� DGA��

An additional observation is that the less successful EC algorithms were eventually able to
generate solutions of the same quality as the SPHC algorithm if we let them proceed beyond
������ evaluations� That is� the primary di�erence observed between the algorithms was
their e�ciency� and not in their completeness �ability to generate good solutions��

��� Comparisons with the Massively Parallel GA

Due to the enormous computational cost that would have been incurred on a CM��� we
did not obtain performance data for the massively parallel GA that could be compared
quantitatively with the serial algorithms� However� we can make the following anecdotal
observations about the relative performance of the serial and parallel algorithms


� The parallel GA requires between ������� and ������� physical simulations �������
generations of the GA� to produce motion controllers comparable to those produced
at a cost of ������ simulations by the SPHC algorithm�

� The running time of the massively parallel GA is typically ���	� minutes on a ���	�
processor CM�� Connection Machine� versus ��	 minutes for the ������ evaluation
SPHC algorithm on a DEC �������� AXP workstation�

We also observed that� in the case of SC problems with highly multimodal solutions� our
EC algorithms are able to generate all of the major variations that the massively parallel
GA was able to generate� For example� for the Willy Worm locomotion problem� the SPHC
algorithm generates both the �crawling� and ��ipping� modes of locomotion �Figures ���
����

� Experiments with Standard Continuous OptimizationMeth�

ods

In addition to the stochastic discrete optimization methods outlined above� we also ex�
perimented with more traditional continuous optimization methods� We implemented two
techniques commonly applied in continuous optimization problems lacking gradient infor�
mation
 the downhill simplex method of Nelder and Mead and the direction�set technique
of Powell� Complete implementation details of these algorithms are beyond the scope of
this paper
 however� descriptions and sample implementations can be found in �����

��� Powell�s Method

Powell�s method is classi�ed as a �direction�set� optimization algorithm� which is one that
seeks to calculate an optimal basis for the function space such that the unit vectors are
well suited to one�dimensional optimization� In other words� an optimal choice of basis



vectors should provide steep descent� while at the same time satisfying the criterion that
optimization along one dimension disturbs minimally previously computed optimizations
along other basis dimensions� Powell�s algorithm� then� works by repeatedly performing
successive one�dimensional optimizations along a set of basis vectors� As it progresses�
the orientation of the set of basis vectors is revised to increase the rate of descent� Our
implementation utilized Brent�s method for one�dimensional optimization� though other
techniques would probably work just as well given the lack of di�erentiability exhibited by
much of the search space�

��� The Downhill Simplex Method of Nelder and Mead

This approach works by keeping a simplex of points and at each iteration repositioning the
highest point of the simplex by re�ecting it through the opposite face� If this is unsuccessful�
the algorithm tries to squeeze the simplex along an axis� or� if nothing else works� to shrink
the simplex� The algorithm continues in this fashion� moving the simplex downhill until
it is no longer able to make progress� The main advantage of this algorithm� other than
simplicity� is that it makes no assumptions about the smoothness or di�erentiability of the
space� Also� because of its coarseness� it can sometimes �step over� local minima that trap
Powell�s method� Because of the discontinuous nature of the BSR search space� we expected
that this method might prove to be more robust than Powell�s method� which relies more
heavily on assumptions of smoothness�

��� Experiments and Results

We performed two groups of experiments to determine the e�ectiveness of these techniques
for motion synthesis� In the �rst group of tests� we applied the algorithms from scratch�
generating a random point in BSR space and using it to seed the minimization algorithms�
In the second group of tests� we considered using these techniques as a postprocess to re�ne
existing trajectories� For these experiments� we began with an existing solution generated
by the SPHC algorithm and then ran the minimization algorithms on this solution to
determine if further improvement of the solution was obtainable� Each set of experiments
was performed for seven distinct motion�creature combinations�

In the �rst group of experiments� we found that neither of the minimization techniques
proved to be e�ective at generating trajectories from scratch� For each of the seven motion�
synthesis problems� a hundred random seeds were generated for each technique� Since it is
common to restart multidimensional minimization techniques such as these� each algorithm
was restarted �ve times with the previous solution� �In most cases no additional improve�
ment was obtained after one or two restarts � �ve was chosen as a reasonably secure upper
bound�� Nevertheless� neither of the techniques was able to provide a useful amount of
improvement beyond the initial randomly generated solutions� for any of the seven test
cases� Although experiments with a larger number of random seeds could be considered�
we found that our computational cost for the above experiments was already greater than
the corresponding cost required by the stochastic search techniques described earlier to �nd
near optimal solutions�



Figure �	
 Improvements to BSR controllers using Powell�s method and the downhill simplex
method

In the second groups of tests� we applied each of these techniques to a solution discovered
by the SPHC algorithm after ������ iterations� In nearly all cases� these techniques provided
at least a modest amount of improvement �see Figure �	�� As the graph shows� in nearly
all cases Powell�s method provides at least as much improvement as the downhill simplex
method�

Overall� our experiments indicate that neither of these techniques is likely to be useful
for generating interesting motions from scratch� Nevertheless� our results indicate that it
may be useful to consider the use of continuous optimization algorithms such as these for
local re�nement of trajectories generated by discrete search techniques� Not surprisingly�
Powell�s method is often able to �ne�tune solutions found by the SPHC algorithm to a
degree which SPHC itself is unlikely to achieve in a reasonable amount of time� due to the
coarseness and randomness of its mutation operators� The visual e�ect of this improvement�
however� is often quite modest�

� Conclusions

The primary motivation for this study was to �nd a search algorithm that would make
the Ngo�Marks approach to motion synthesis viable on current serial machines� We have
succeeded in this e�ort� and have identi�ed the SPHC algorithm to be a particularly e�ec�
tive serial global search algorithm� We have improved the e�ciency of the global search
algorithm by an order of magnitude with respect to the number of physical simulations ex�
ecuted
 furthermore� the SPHC algorithm algorithm on a DEC AXP workstation generates
BSR controllers equivalent to those found by the massively parallel GA in one tenth of the
time�

Another signi�cant result yielded by our study was the isolation of the BSR controller
representation as the key component in the success of the motion�synthesis algorithm� The



fact that simple search algorithms such as SPHC are successful in generating good motion
controllers� even outperforming the original massively parallel GA� clearly demonstrates
the fact that the space of BSR controllers is relatively simple to search for near�optimal
solutions�

We believe that our study is thorough enough to conjecture that although there no doubt
exist other algorithms that can marginally outperform the SPHC algorithm� future research
in improving the e�ciency of the the search component of the motion�synthesis algorithm
would be best directed towards studying fundamentally di�erent search algorithms� di�erent
encodings of the motion controller� or substantially di�erent implementations of genetic
operators� For example� our preliminary experiments with two standard function�optimizing
techniques has shown that although these deterministic algorithms perform poorly from
random starting points� they can rapidly �nd small to medium improvements in solutions
originally generated by our EC algorithms �Section 	�� A hybrid EC�deterministic algorithm
may prove to be a very e�ective combination�

References

��� L� S� Brotman and A� N� Netravali� Motion interpolation by optimal control� Computer
Graphics� �����
��� ���� August �����

��� M� F� Cohen� Interactive spacetime control for animation� Computer Graphics�
�	���
��� ���� July �����

��� L� Davis� Handbook of Genetic Algorithms� Van Nostrand Reinhold� New York� NY�
�����

��� Evolutionary Programming Society� Proceedings of the First Annual Conference on
Evolutionary Programming� February �����

��� Evolutionary Programming Society� Proceedings of the Second Annual Conference on
Evolutionary Programming� February �����

�	� J� D� Foley� A� van Dam� S� K� Feiner� and J� F� Hughes� Computer Graphics� Principles
and Practice� The Systems Programming Series� Addison�Wesley� Reading� MA� �nd
edition� �����

��� A� Fukunaga� Genetic and stochastic search strategies to solve the spacetime con�
straints problem� A�B� Thesis� Harvard University� April �����

��� A� Fukunaga� J� T� Ngo� and J� Marks� Automatic control of physically realistic an�
imated �gures using evolutionary programming� In Proceedings of the Third Annual
Conference on Evolutionary Programming �EP���� San Diego� CA� February �����
World Scienti�c� To appear�

��� D� E� Goldberg� Genetic Algorithms in Search� Optimization� and Machine Learning�
Addison�Wesley� Reading� Massachusetts� �����



���� J� T� Ngo and J� Marks� Massively parallel genetic algorithm for physically correct
articulated �gure locomotion� Working Notes for the AAAI Spring Symposium on
Innovative Applications of Massive Parallelism� Stanford University� March �����

���� J� T� Ngo and J� Marks� Physically realistic motion synthesis in animation� Evolution�
ary Computation� ����
��� �	�� �����

���� J� T� Ngo and J� Marks� Spacetime constraints revisited� In SIGGRAPH ��� Conference
Proceedings� pages ��� ���� ACM SIGGRAPH� Anaheim� CA� August �����

���� W� H� Press� S� A� Teukolsky� W� T� Vetterling� and B� P� Flannery� Numerical Recipes
in C	 The Art of Scienti
c Computing� Cambridge University Press� Cambridge� UK�
second edition� �����

���� R� Tanese� Distributed genetic algorithms� In Proceedings of the Third International
Conference on Genetic Algorithms� �����

���� M� van de Panne and E� Fiume� Sensor�actuator networks� In SIGGRAPH ��� Con�
ference Proceedings� pages ��� ���� Anaheim� CA� August ����� ACM SIGGRAPH�

��	� D� Whitley� The genitor algorithm and selection pressure
 Why rank�based allocation
of reproductive trials is best� In Proceedings of the Third International Conference on
Genetic Algorithms� �����

���� A� Witkin and M� Kass� Spacetime constraints� Computer Graphics� �����
��� �	��
August �����

A Test Suite of Spacetime Constraint Problems

A�� Sarah Sigma

Sarah Sigma �Figure ��� is an unbranched� four�rod creature whose task was to jump as
high as possible� The evaluation criterion was the maximum height achieved by the lowest
joint during a period of �� time steps� The joint angle ranges on Sarah are quite limited�
so the motions that result are predictable� There is an initial compress phase �squash��
followed by a rapid expansion phase �expand�� which propels Sarah into the air� Once in
the air� Sarah compresses again �compress�� increasing the height of its lowest joint�

A�� Willy Worm

Willy Worm �Figures ������ is an asymmetric� unbranched� three�rod creature with a large
degree of freedom in its joint angle movement� The task given Willy is forward locomotion
�walk as far as possible� within the time allotted� The evaluation criterion was the maximum
horizontal distance achieved by the center of mass� This is an example of a multi�modal
problem in which the various solutions are entirely distinct� There are two motions which
are commonly observed �both shown here�
 �ipping and shu�ing�



Time

Squash

Time

Expand

Compress

Time

Figure ��
 Sarah Sigma jumping�



Touch

Time

Pull

Time

Time

Leap

Time

Pull

Figure ��
 Willy Worm shu!ing�



Time

Touch

Flop

Time

Time

Pull

Reach

Time

Time

Figure ��
 Willy Worm �ipping forward�



A�� Beryl Biped

Beryl Biped �Figure ��� is a branched� �ve�rod character with two jointed legs and a rigid
torso� roughly modelling a two�dimensional legged humanoid whose task is forward locomo�
tion� Rod masses are of human proportion� Beryl�s success was measured by the maximum
horizontal distance achieved by the center of mass during the course of a simulation� The
resulting motion shown here is a cyclic� bipedal locomotion�

A�� Mr� Star�Man

Mr� Star�Man �Figures ������ is a branched� �ve�rod creature� in which all rods are of equal
length and mass� Joint�angle ranges are con�ned to one of the quadrants de�ned relative
to its top �torso� rod� so that rods cannot cross each other� Given the task of forward
locomotion�the two main classes of resulting motions �both shown here� are cartwheeling
and shu�ing�

A�� Five�Rod Fred

Five�Rod Fred �Figures ������ is an unbranched creature consisting of �ve equal�length
rods� The middle rods are of equal mass� but the terminal rods are �ve times heavier� Each
joint allows its pair of connected rods to be at most �� degrees from collinear� In addition
to an inchworm�like crawling motion which was anticipated when given the task of forward
locomotion� this creature yielded some of the most interesting motions developed by the
system� including a �ipping motion which results in forward momentum� culminating with
a roll at the end�



Extend "left"

Time

leg

Time

Pull "right" leg

Extend "right" leg

Time

Time

Figure ��
 Beryl Biped walking�



Reach

Time

Time

Gather

Reach

Time

Gather

Time

Time

Reach

Figure ��
 Mr� Star�Man shu!ing�



Time

Time

Time

Time

Figure ��
 Mr� Star�Man cartwheeling�



Time

Gather

Time

Reach

Gather

Time

Time

Figure ��
 Five�Rod Fred crawling�



Time

Time

Time

Time

Time

Time

Time

Time

Time

Time

Figure ��
 Five�Rod Fred �ipping and rolling�


