AUTOMATIC CONTROL OF PHYSICALLY REALISTIC ANIMATED FIGURES
USING EVOLUTIONARY PROGRAMMING

ALEX FUKUNAGA*®
Duwvision of Applied Sciences, Harvard Universily
Cambridge, MA 02138, U.5.A.

and

JOE MARKST

Cambridge Research Lab, Digital Fquipment Corporalion
Cambridge, MA 02139, U.5.A.

and

J. THOMAS NGO*
Graduate Biophysics Program, Harvard University
Cambridge, MA 02138, U.5.A.

ABSTRACT

The ideal system for computer animation would relieve the human animator of
responsibility for specifying details of motion. In this paper, we describe an em-
pirical study of evolutionary algorithms for this, the motion-synthesis problem. It
is shown that simple search algorithms based on the evolutionary-programming
paradigm were most efficient in searching the space of candidate motion controllers
for a variety of motion-synthesis problems involving 2D articulated figures.

1. Introduction

Computer animation has traditionally been a tedious and time-consuming pro-
cess. In most current computer-animation systems, the animator is given minimal
assistance by the computer. Automatic motion synthesis—whereby the animator
specifies only the physical structure of a character and criteria for evaluating the
character’s motion, and the computer generates a near-optimal, physically realis-
tic (and therefore visually plausible) trajectory for the character’—is much more
attractive, though very difficult to realize.

To date, the most promising approach to the motion-synthesis problem has been
the automatic generation of motion controllers that, when executed in a simulated
physical environment, produce a desired motion.”® (The motion-synthesis problems
considered here and in the cited articles involve characters modeled as simple 2D

*Current affiliation: University of California, Los Angeles.

TCurrent affiliation and contact: Mitsubishi Electric Research Laboratories, Inc., 201 Broadway, Cambridge,
MA 02139, U.S.A. E-mail: marks@merl.com.

FCurrent affiliation: Interval Research Corp., Palo Alto.

articulated figures.) Incarnations of this approach differ in how the motion con-
troller is represented and how the space of possible controllers is searched. Ngo and
Marks®* proposed an algorithm in which the controller is a bank of independent
stimulus-response (SR) rules; the controllers are referred to as banked stimulus-
response (BSR) controllers. Information from the physical environment determines
which SR rule is active at any given time step in the physical simulation. The space
of possible controllers is searched using a massively parallel GA. This approach pro-
duces very effective controllers, but the cost of the search algorithm is high: 30-60
minutes on a 4096-processor CM-2 Connection Machine to find a motion controller
for a simple articulated-figure character.

The goal of our research was to develop an improved search algorithm. In this
paper, we present several alternative evolutionary-computation (EC) algorithms for
finding good BSR controllers and compare them empirically.

2. The Old Approach

—

A BSR controller governs a vector #(t) of joint angles, given information about

the physical environment in the form of a vector S(¢) of sense variables. Sample
sense variables for an articulated figure are listed in Table 1.

Table 1. Components of the vector S for an n-rod articulated figure.

01,05,...,0,_1 | Joint angles

fi,fay- ooy faa1 | Contact forces at rod endpoints
Yem Height of center of mass
Yem Vertical velocity of center of mass

The controller contains N stimulus-response rules (VN = 10 for the empirical tests
reported here). Every rule ¢ is specified by stimulus parameters Sﬂn[z] and §hi[i], and
response parameters 0°[i] and 7[i]. Based on the instantaneous value of the sense
vector g(t), exactly one rule is active at any one time. In particular, each rule ¢
receives a score based on how far the instantaneous sense vector g(t) falls within
the hyperrectangle whose corners are §l°[i] and §hl[z] The highest-scoring rule is
marked active. If g(t) is not inside the hyperrectangle associated with any rule, the

—

rule that is active in the previous time step remains active. The joint angles 6()

are made to approach the target values go[iactive] prescribed by the active rule 7,.gve.

The pseudocode in Figure 1 summarizes how a BSR controller behaves and is
evaluated. The function used to measure the fitness of a controller is specific to
each motion-synthesis problem. For example, if the objective is for the character
to jump as high as possible, the value of the fitness function could be the greatest
height achieved by the figure’s center of mass during the motion.

The original Ngo-Marks approach used a massively parallel GA to search the
space of possible BSR controllers. In this algorithm, shown in Figure 2, each can-

Set factive to 1
for t = 1 to tmax
Cause joint angles g(t) to approach v [lactive] With time constant T[active)
Simulate motion for time interval ¢
Measure sense variables §(t)
Possibly change t,c4ive, based on §(t)
end for
Assign the controller a fitness value based on how well the
simulated motion meets the animator-supplied task criteria

Fig. 1. Pseudocode for a BSR controller.

do parallel
Randomize genome
end do
for generation = 1 to number_of_generations
do parallel
Evaluate genome
Select mate genome from a nearby processor
Cross genome with mate genome
Mutate new genome
end do

end for

Fig. 2. A parallel GA.

didate solution, or genome, is assigned to a single processor, and each generation of
genomes is evaluated in parallel.’

Although it first seemed that the match between the GA and SIMD massive par-
allelism was ideal, Ngo and Marks later observed some incompatibilities between the
CM-2 architecture and the search strategy that apparently rendered the algorithm
inefficient.? This raised the possibility that searching for good BSR controllers could
potentially be done much more easily.

3. Newly Implemented Search Algorithms

The search algorithms explored in this study are presented in Figures 3-9. Vari-
ous kinds of GAs are described in Figures 3-5; Figures 6-9 contain algorithms more
in the EP tradition. In addition, random generate and test (RG&T) was included
as a baseline benchmark.

§Purther algorithmic details, in particular those concerning the crossover and mutation operators, are de-

scribed elsewhere.>*

Initialize population
for generation = 1 to number_of generations
Evaluate each genome in population
for i = 1 to (size_of_population / 2)
Select two parent genomes by roulette-wheel selection?
Cross & mutate to generate two child genomes
end for
Replace old parent population with new child population
end for

Fig. 3. A generational-replacement GA (GGA).

Initialize population
Evaluate each genome in population
Rank order the population
for evaluation = 1 to (number_of evaluations / 2)
Select two parent genomes by linear rank-based selection
Cross & mutate to generate two child genomes
Evaluate the two child genomes
Insert child genomes in order into population
Delete two lowest-ranked genomes in the population
end for

Fig. 4. A steady-state GA (SSGA).

Initialize all demes
Evaluate each genome in population
Rank order each deme
for evaluation = 1 to (number_of_evaluations / (2xnumber_of_demes))
for each deme
Insert any inbound migrants into deme
Select two parent genomes by linear rank-based selection
Cross & mutate to generate two child genomes
Evaluate the two child genomes
Insert child genomes in order into population
Delete two lowest-ranked genomes in the population
With small probability
Select two migrant genomes by linear rank-based selection
Send copies of migrant genomes to randomly selected deme
end for
end for

Fig. 5. A distributed GA (DGA).

Initialize population
for generation = 1 to number_of generations
Evaluate each genome in population
for i = 1 to size_of_population
Select a parent genome by roulette-wheel selection
Mutate to generate a child genome
end for
Replace old parent population with new child population
end for

Fig. 6. Evolutionary Programming (EP1).

Initialize population
Evaluate each genome in population
Rank order the population
for evaluation = 1 to number_of_evaluations
Select a parent genome by linear rank-based selection
Mutate to generate a child genome
Evaluate the child genome
Insert child genome in order into population
Delete the lowest-ranked genome in the population
end for

Fig. 7. Evolutionary programming (EP2).

Initialize and evaluate a single genome
for evaluation = 1 to number_of evaluations
Randomly perturb the genome
Evaluate the new genome
if the new genome is better than the old one then
Replace the old genome with the new one
end if

end for

Fig. 8. Stochastic hill climbing (SHC).

Initialize population
Evaluate each genome in population
for generation = 1 to number_of_generations
for each individual genome in the population
Randomly perturb the genome
Evaluate the new genome
if the new genome is better than the old one then
Replace the old genome with the new one
end for
if (generation mod reseed _interval) = 0 then
Rank order the population
Replace bottom 50% of the population with top 50%
end if

end for

Fig. 9. Stochastic population hill climbing (SPHC).

Each of these algorithms was tested on five different motion-synthesis problems,
though results for only one of the five problems is reported here. (The other results
are similar.) To facilitate a fair comparison, each algorithm was permitted 40,000
calls to the fitness function. Following indications from small early tests, each
algorithm was tested using several sets of promising control parameters, summarized
in Table 2. Some parameters in the table require a little explanation: the crossover
and mutation rates give the probability that these operators are applied to a genome;
the migration rate indicates the probability with which outbound migrants are
spawned from a particular deme in the distributed GA; and the reseed interval is
the number of generations between reseeding operations in the SPHC algorithm.

4. Results

The relative performance of the various algorithms (using the best parameters for
each algorithm) for a representative motion-synthesis problem involving a character
called Mr. Star-Man®* is illustrated in Figure 10.9The measure of performance is
the average fitness value from 10 runs of the best controller evaluated up to that
point.

From the figures, the following general observations can be made:

e Ags a group, the EP algorithins outperformed everything else. In particular,

the SPHC algorithm consistently yielded the best results.
o All the EC algorithms outperformed RG&T.

e There is no consistent trend among the GAs.

The complete set of data for this study is presented elsewhere.

Table 2. Key parameters.

Fxperimental Mutation | Crossover | Migration | Reseed
Group Population | Rate Rate Rate Interval
RG&T N/A N/A N/A N/A N/A
GGA-1 100 0.1 0.6 N/A N/A
GGA-2 200 0.1 0.6 N/A N/A
SSGA-1 100 0.1 0.6 N/A N/A
SSGA-2 200 0.1 0.6 N/A N/A
DGA-1 5 X 40 0.1 0.6 0.05 N/A
DGA-2 5 X 40 0.1 0.6 0.005 N/A
DGA-3 5 X 100 0.1 0.6 0.05 N/A
DGA-4 5 X 100 0.1 0.6 0.005 N/A
EP1-1 20 1.0 N/A N/A N/A
EP1-2 50 1.0 N/A N/A N/A
EP2-1 20 1.0 N/A N/A N/A
EP2-2 50 1.0 N/A N/A N/A
SHC 1 1.0 N/A N/A N/A
SPHC-1 10 1.0 N/A N/A 100
SPHC-2 10 1.0 N/A N/A 200
SPHC-3 10 1.0 N/A N/A 400
SPHC-4 10 1.0 N/A N/A 400
SPHC-5 10 1.0 N/A N/A 800
35
3+ - '++',,+'+ NS :AA_
+++++ (x@ééééé OO<
©.0.0 <>$J<§<>OX@°éé *%%%*%*
E % % o P s x x X X *
:91_ 2 F 'ii%—AAAi;rﬁ'% % XVXXXX'XX o D'DD'DQ'E@H
g ¢ AA ++ ><><>< DDDD[]DD++++ SPHC-2
§ oress o S LN TS I EP1-2
E . S SHC
" I - XX gt _ EP2-2
4 ' Laf+" DGA-2
= . X450 SSGA-2
V- S — i GGA2
Ooggo 0000000000000 000000E002000 RG&T
+ o 0% i
0 [R>S
e
-0.5°
10000 20000 30000 40000

Fig.

Individuals Evaluated

10. Comparative performance of the search algorithms.

O 4+ O X X & > 4+

Due to the enormous computational cost that would have been incurred on a
CM-2, we did not obtain performance data for the massively parallel GA (Fig-
ure 2) that could be compared quantitatively with the serial algorithms described
here. However, we can make the following anecdotal observations about the relative
performance of the serial and parallel algorithms:

o The parallel GA requires between 200,000 and 850,000 physical simulations
(50-200 generations of the GA) to produce motion controllers comparable to
those produced at a cost of 40,000 simulations by the SPHC algorithm.

e The running time of the massively parallel GA is typically 30-60 minutes on
a 4096-processor CM-2 Connection Machine, versus 3-6 minutes on a DEC
3000/400 AXP workstation to produce comparable results.

5. Conclusions

This study has shown that evolutionary programming is particularly effective
for finding near-optimal solutions to the motion-synthesis problem. The success of
simple EP algorithms such as SPHC showed that the space of BSR controllers is
relatively simple to search, supporting the view that generating motion controllers
is an attractive approach to motion synthesis.

6. References

1. A. Fukunaga, Genetic and stochastic search strategies to solve the spacetime
constraints problem. Undergraduate thesis, Harvard University, April 1993.

2. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning (Addison-Wesley, Reading, Massachusetts, 1988).

3. J. T. Ngo and J. Marks, Massively parallel genetic algorithm for physically
correct articulated figure locomotion, in Working Notes for the AAAT Spring
Symposium on Innovative Applications of Massive Parallelism, Stanford Uni-
versity, March 1993.

4. J. T. Ngo and J. Marks, Physically realistic motion synthesis in animation,
Evolutionary Computation, 1 (1993), pp. 235-268.

5. J. T. Ngo and J. Marks, Spacetime constraints revisited, in SIGGRAPH 93
Conference Proceedings (ACM SIGGRAPH), Anaheim, CA, August 1993,
pp- 343-350.

6. M. van de Panne and E. Fiume, Sensor-actuator networks, in SIGGRAPH 93
Conference Proceedings (ACM SIGGRAPH), Anaheim, CA, August 1993,
pp. 335-342.

7. A. Witkin and M. Kass, Spacetime constraints, Computer Graphics, 22
(1988), pp. 159-168.

