
Object-Oriented Development of a
Data Flow Visual Language System

Alex S. Fukunagat, Takayuki D. Kimuratt, Wolfgang Preett

THarvard University
Cambridge, Massachusetts 02138

??Department of Computer Science
Washington University

St. Louis, Missouri 63130

Abstract
This paper describes the object-oriented development of
ProtoHyperflow, a data flow visual language. We
demonstrate how object-oriented software construction
principles can be used for the development of extensible
and reusable building blocks for the development of data
flow based visual languages.

1 Introduction
Object-oriented software development techniques make it
possible to develop generic applications for specific
domains. These application frameworks consist of a
class library forming a frame that has to be customized
for a specific application. User interface application
frameworks like ET++ [13], MacApp [14], or AppKit
[9], for example, provide a reusable, blank application
that implements much of a given user interface look-
and-feel standard. The programmer can concentrate on
implementing the application-specific parts. Application
frameworks are not limited to the construction of
interactive, graphic-oriented user interfaces, and can be
applied to any area of software systems.

Recently there has been a trend to use data flow as the
underlying computational model for visual language
implementations. As a result, many recent languages
share common features, and visual programming
languages seem to be reaching the point where they
build upon previously existing languages. For example,
several languages build on the concepts introduced by
Show and Tell [5] , including Data-Vis [4], Extended
Show and Tell (ESTL) [8], and Hyperflow [6] .
This trend towards a standardization of a class of visual
languages motivated us to apply the application
framework idea to this domain. With visual language
design becoming an evolutionary process, the

availability of an appropriate object-oriented application
framework can tremendously reduce the implementation
effort of such languages by eliminating the need to
reinvent the wheel for each new languge. In this paper,
we describe our first efforts in the endeavor to develop
such a framework.

2 The language ProtoHyperflow
(PHF)

ProtoHyperflow (PHF) is a data flow visual
programming language which is a derivative subset of
Hyperflow. While Hyperflow is designed as a visual
language for a pen-based multimedia system, PHF is
implemented on a traditional, mouse/CRT-based system
using C++ and the user interface application framework
ET++ [12, 3, 13, 11.

PHF is a general purpose visual language system
consisting of an integrated editor and a data driven
interpreter system. The following is an informal
description of the PHF language. Most of the language
constructs available in PHF appear in other data flow
visual languages, thus forming the basis for factoring
out commonalities into an application framework.

2.1 PHF syntax

The syntax of PHF-like that of many other data flow
visual languages-consists of boxes and arrows, a box
representing a process, and an arrow representing a data
flow between processes. Boxes are called vips (visually
interactive processes) in PHF, and arrows are called
connectors.

Computation in PHF is carried out by a homogenous
community of vips communicating with each other.
Vips can be recursively nested.
The vip is the only unit of system decomposition in
PHF, paralleling the design of LISP, in which lists are

134
1049-2615/93 $03.00 0 1993 IEEE

the only structure. This gives PHF the ability to treat
programs as data objects, as described in Section 3.6. A
vip consists of a mailbox, a body, and an optional
name. A mailbox holds a discrete data object, such as an
integer or string. The body is the semantic content (the
implementation of the semantics) of a vip. The body of
a vip can be a system defined PHF primitive (e.g., a '+'
primitive which returns the sum of a vip's inputs), a
reference to another vip (a call to a user-defined
function), a nested ensemble of vips, or it may be
empty. A vip may also have a name, which appears on
the top left comer of the vip. Names are necessary when
defining functions (see Section 2.5). A connector
establishes dataflow between the two vips that it
connects. A connector may also have a label. A PHF
program is a directed acyclic graph, where the nodes are
vips and the edges are connectors.
It is necessary to introduce some shorthand terminology
here, in order to facilitate a more detailed discussion of
the constructs used in PHF. We shall define 'vip X to
mean 'the vip with the name X, and 'connector X to
mean 'the connector with the label X . Also, an empty
vip shall be called a variable vip.

2.2 Data objects in PHF

Data objects which flow from box to box are another
common property of data flow visual languages. The
following data objects are currently implemented in
PHF: integers, strings, signals, and vips. Strings in
PHF are prefixed with a quote (I) in order to prevent
them from being evaluated as references to other vips.
Signals are an enumerated data type which is either valid
or invalid, and are used to denote the result of a predicate
(such as = ,<>). The use of vips as data objects is
sketched in Section 3.6. All data objects can be
transmitted via mail (see below) and can be displayed in
a variable (empty) vip.

2.3 Communication between vips

There are two modes of communication in PHF:
mailing and broadcasting.

Mailing is communication of discrete data objects by
dataflow across connectors. In mailing, the contents of
the mailbox of the source vip is copied to the mailbox
of the destination vip. This is the standard mode of
communication between vips.
Broadcasting is a special mode of communication which
involves no connectors. A broadcasting vip, which is
denoted as a vip with a dotted border (see Figure 5)
transmits the contents of its mailbox to all of the
children of its parent -- its sibling vips. (See the
description of the factorial function in Section 2.5 for an
example of the usage of the broadcasting mechanism.)

2.4 PHF execution protocol

A PHF program is executed from its outermost vip. The
execution mode implemented by PHF is, as with most
current data flow visual languages, data driven (all vips
which have input will execute).

A vip is executable exactly once, and will execute when
it has the minimum number of valid inputs (input
connectors on which the source's mailbox is ready to be
transferred). The number of minimum inputs is a
semantic property of a vip. For example, a variable vip
(an empty vip) will execute as soon as it has one valid
input (all other inputs will be ignored), while a +
primitive (summation) will not execute until all of its
inputs are valid. If a variable vip X has two input
connectors with sources at vip Y and Z, then this results
in a nondeterministic behavior, where the value
transferred to X is the value of the source which is ready
first (If Y is ready to transmit first, then X receives the
value of Y, but if Z is ready to transmit first, then X
receives the value of Z).

I

Figure 1: PHF program for addition

I I

Figure 2: PHF program for division

2.5 PHF programming constructs

The following sections describe key programming
constructs in PHF.

Primitive and user defined functions, binding
rules

A vip may invoke a system defined primitive or a user
defined function.

Figure 1 shows a PHF program which calculates the
sum of 4 and 3. The + vip is a system defined primitive
which returns the sum of all of its inputs.

135

Another type of function is one which involves
parameter binding. For example, for a binary division
operation (a division with two inputs), it is necessary to
distinguish which of the operands is divided by the
other. Thus, binding rules are necessary.

The binding rules in PHF are name based. In the case of
system defined primitives, the parameters which need to
be bound to input values are defined by the system as
#1, #2, ... #n, where #1 is the first argument, #2 is
the second argument, and so on. Input values are bound
to these parameters by labeling the connectors which
connect the input values and the primitive. Thus, in a
binary division, the dividend must be bound with
system parameter #1, and the divisor must be bound
with system parameter #2, and the ‘r primitive will
return the value of #1/#2. Figure 2 shows a PHF
program which calculates 10/2.
User defined functions are implemented by naming a
vip, and then referencing that vip from another vip.
Figure 3 shows the definition of Increment, a vip
which takes one input parameter in vip X, and returns
X+1. The Q vip is a system defined primitive which
transfers the contents of its mailbox to its parent. Figure
4 shows Calclnc, a PHF program which calls the
Increment function with input value 5. When Calclnc
is executed, the 5 is mailed to the vip which calls
Increment. Then a copy of the function Increment is
created, with 5 bound to the vip X. The copy of the
function vip is then executed. The result of the addition,
6, is sent out of the Increment function to its parent,
which is the vip which calls Increment in Calclnc, and
the result then flows to the variable vip at the bottom of
the Calclnc vip.

T he binding of input values to unbound variable vip in
the function is established by associating the labels of
the connectors entering the function call vip with the
names of the parameter vips of the function. Thus, in
the example above, the empty variable vip X in Figure
3 is associated with the connector labeled X in Figure 4.

PHF functions have only one return value, which is
mailed out via the Q vip. Note that it is not possible to
have side effects in PHF, because of its data flow based
nature.

Figure 3: Increment function definition

Calclnc

r;l
Increment xq

I

Figure 4: Calclnc function d sfinition

Conditionals

Conditionals are implemented in PHF using the
broadcasting mechanism (Section 2.3) and the signal
data type (Section 2.2). If a vip receives an invalid
signal, it is inactivated so that it does not execute. A
broadcasting vip can prevent all of its sibling vips from
executing by broadcasting an invalid signal. Thus,
conditionals can be implemented by having multiple
vips, among which only one is selected by invalidating
all of the others.

The recursive implementation of the factorial function
(!) demonstrates the usage of conditionals. As shown in
Figure 5 this function takes one integer input, X and
processes it as follows: if X=O then return 1 else return
X * (X -l)!. (X is assumed to be a positive integer).

The = and <> are PHF primitives which return valid or
invalid depending on whether the ‘equal’ and ‘not equal’
predicate holds true for their inputs. If X=O, then the =
predicate returns a valid signal, while the <> predicate
returns an invalid signal, and a 1 is returned. However,
if X o 0, then X * (X -l)! is returned.

Note that PHF uses an asynchronous, parallel execution
model, so a vip executes as soon as its inputs are ready.
Thus, when making conditional statements, the
conditionals must be mutually exclusive, or the results
will be unpredictable (as mentioned above, the program

136

Figure 5: Factorial Function

will still be syntactically correct, but it will be
nondeterministic).

3 PHF’s object-oriented
implementation

The principal software components of the PHF system
are a direct-manipulation GUI (graphic user interface)
editor with an integrated data driven interpreter system.

The graphical components of the PHF system have been
developed in C++ using the application framework
ET++ [12, 3, 13, 11. Some details concerning the
implementation effort of this component are presented in
the Section 5 . Since there are numerous publications on
how to implement GUIs based on appropriate object-
oriented application frameworks, we do not describe that
PHF system component, and instead concentrate on the
interpreter component.

In a manner similar to that with which ET++ provides
software concepts for implementing GUIs, we developed
classes that form a basic application framework for a
data driven interpreter system for data flow visual
languages.
We will first describe the principles of an application
framework (short: framework) and then sketch the
interpreter framework which resulted from the object-
oriented PHF development. We take the reader’s
knowledge about the object-oriented concepts of
inheritance, polymorphism and dynamic binding for
granted.

3.1 Application frameworks

We first discuss some aspects of class libraries before
defining the term application framework. Compared to
conventional routine libraries, class libraries are
hierarchical, with the most general class at the top of the
hierarchy tree (if single inheritance is used). This
hierarchical organization helps to reduce the complexity
of a library. An important principle behind the design of
a class hierarchy is that the common behavior of classes
is factored out into their superclasses.

Classes which factor out common behavior of other
classes typically contain some methods that cannot be
implemented. Any class that contains one or more
“empty” methods (i.e., methods with some kind of
dummy implementation) is termed abstract class. It does
not make sense to generate instances of them.
Nevertheless abstract classes may also contain methods
that can already be implemented in advance for all
subclasses.

The most important aspect of abstract classes is that
they form the basis of extensible and reusable software
systems: it is possible to realize whole software systems
using only abstract classes, i.e., the protocol supported
by them (we define the term “protocol of a class” as all
the methods and instance variables provided by a class).
If subclasses of abstract classes are added to the class
library, these software systems need not be changed.
They also work with the objects of new subclasses of
these abstract classes (on which other software systems
are based), since these objects support at least the
protocol (though implemented in a specific manner)
defined in their (abstract) superclasses. The methods of
abstract classes are dynamically bound, so that the

137

corresponding methods of the objects which are
instances of the new classes are called at run time.

For instance, a visual language interpreter component
which can be implemented based on the protocol
provided by the abstract classes VI PShape and
DataObj will work with any objects generated out of
subclasses of these abstract classes.

New subclasses of abstract classes can reuse all the code
that was already implemented in their superclasses.
Class libraries are called application frameworks if they
apply the ideas presented above in order to provide a
software system which is a generic application for a
specific domain. Classes comprising the interpreter,
together with all the abstract classes these components
rely on, form a visual language interpreter application
framework. Applications based on such an application
framework are built by customizing its abstract and
concrete classes. Thus, a given framework already
anticipates much of an application’s design which is
reused in all applications based on the classes of that
application framework. This implies not only a code
reduction but also a standardization of that domain. As
we have remarked above, the domain of data flow visual
languages is becoming standardized, so we believe that
the application of a framework to this domain is timely.

3.2 PHF’s class library

A PHF program can be modeled abstractly as a
community of vips interacting with each other by
sending messages via the mailing and broadcasting
mechanisms. This classifies objects in PHF into two
categories: 1) the visually interacting processes, and 2)
the data objects which are being passed from vip to vip.
Another way to classify objects in PHF is to
differentiate between visual objects and internal objects.
The visual objects are the visual component of the vips
themselves (the boxes) and the connectors. The internal
objects are the implementations of the semantic content
of the vips and the data objects.

Thus, we designed the abstract classes VIPShape,
VIPContent, and DataObj, which represent the visual
content, the semantic content, and the data objects.
Each of these abstract classes and the interpreter system
based on them shall be described in detail.

VlPShape is the abstract class for the visual objects in
PHF (see Figure 6). Its concrete subclasses are the boxes
(instances of the classes VlPRectShape and
6 roadcas t V I P Rect S h a pe) and the connectors
(instances of the class VIPConnector).
The abstract class VlPShape itself is a subclass of
ET++’s abstract class VObject (visual object), which
describes properties common to objects which have a
visual representation (e.g., rendering, event handling,
resizing, moving). VObject, together with other

abstract and concrete classes of the GUI application
framework ET++ saved a significant amount of work in
implementing PHF’s visual components, i.e., the
language editor and the visual aspects of the interpreter.

The VlPRectShape subclass represents a vip’s visual
component. Its members include its name, lists of input
and output connectors, the mailbox which contains a
data object, and a semantic content (a subclass of
VIPContent). In addition, each vip has a parent vip and
a list of contained vips as instance variables, reflecting
the recursively nested nature of the vips. Methods
defined for VI PRectShape include methods to
manipulate the members listed above, as well as
methods which handle the visual aspects of the vip.

VlPConnector represents connectors between vips. The
connector has as its members the start and end vips of
the connector, and its name.

VI PS hape

VlPRectShape
BroadcastVlPRectShape t VI PConnector

Figure 6: VlPShape class hierarchy
3.3 Data objects

The abstract class DataObj (see Figure 7) represents a
data object in PHF. These data objects are the message
packets which are sent from vip to vip via
mailhroadcast. DataObj’s protocol provides especially
the following two methods: GetValue allows the actual
data (data of type int, suing, enumerated type Signal, or
a pointer to a VIPRectShape) to be extracted from the
packet, and HFDataObjToStr returns a standard
representation of the data (a string) which can be
displayed in the visual environment.

The concrete subclasses D a t a 0 b j - I n t ,
Da taO b j- S i g n a I, and Data 0 b j-S t r i n g contain
instances of the actual data objects and override the
GetValue and HFDataObjToStr methods.

New data types can be easily added by defining a new
concrete subclass of DataObj and overriding the
GetValue and HFDataObjToStr methods (see Section
3.6).

DataObj

DataObj-lnt
DataObj-Sig nal L DataObj-Stri ng

Figure 7: DataObj class hierarchy

138

3.4 Semantic components

The abstract class VlPContent represents the semantic
content of a vip. It has a member pointer to the
VlPRectShape it belongs to, and defines the
dynamically bound method Execute, which every
subclass of VlPContent must override.

The subclasses of VlPContent mirror the language
definition for the semantic content of a vip. The
subclasses include: Va rV I P (variable vip),
EnsembleVIP (nested ensemble of vips), FuncVlP (a
reference to another vip - a function call), and
PrimOpVlP (PHF primitive).

PrimOpVlP is an abstract class encompassing all
system defined primitives. It defines generalized methods
for obtaining message packets from input connectors
(Checklnputs, GetMsg) and updating the value in the
vip’s mailbox (SetResult). Subclasses of PrimOpVlP
must override the Processlnput method, which
processes the inputs and returns as a result a DataObj
instance. For example, the Processlnput method for
the ‘-I primitive matches the two operands with the input
for the connector labeled with #1 and #2, and returns a
DataObj-lnt whose value is #1 - #2.
Extensions to the language semantics are easily
accomplished by adding concrete subclasses of
VlPContent for major language constructs (e.g..
iteration) and of PrimOpVlP for primitive operations
(e.g., square root) .
VlPContent

VarVlP
EnsembleVIP
FuncVlP
PrimOpVlP

PlusOpVlP
EqualOpVlP

E
L

Figure 8: VlPContent class hierarchy
3.5 Interpreter execution protocol

A PHF program is executed by 1) making a copy of the
outermost vip of the program by using the Deepclone
method of ET++’s root class Object (makes an identical
copy of an object, including all objects referenced as
instance variables), 2) opening a new window for the
copy (the Execution Window) and 3) invoking the
Execute method of the copy.

The execution mode implemented by PHF is, as with
most current data flow visual languages, data driven, in
which any vip which has input is executed (to our
knowledge, only VPL [7] has implemented demand
driven execution).

An ensemble of vips is executed in the following way:
A vip is executable exactly once, and will execute when
it has the minimum number of valid inputs (input
connectors on which the source’s mailbox is ready to be
transferred). The number of minimum inputs is a
semantic property of a vip. For example, a variable vip
will execute as soon as it has one valid input (all other
inputs will be ignored), while a + primitive
(summation) will not execute until all of its inputs are
valid.
This is implemented as follows: A queue of all vips
whose valid flags are set is constructed (the valid flag
may be reset if the vip has received an invalid message).
Empty VarVlPs (for which user input is required) are
moved to the front of the queue, followed by vips with
broadcast borders. If a vip can not execute because the
minimum number of its valid inputs are not ready, then
it is inserted at the end of the queue.

3.6 Extensibility of PHF’s core framework:

The design of the PHF interpreter around the abstract
classes VIPContent, and DataObj made possible the
construction of a core framework which could be easily
extended. New data types are added by adding subclasses
of DataObj, and semantic extenstions to the language
are made by adding subclasses of VIPContent. Since
the core language operates on the abstract classes
VlPContent and PHFDataObj, it is possible to make
significant language extensions without modifying the
core of the language. The following example
demonstrates this point.

To the basic PHF language as described above, we added
the capability to handle higher order functions and an
extensive set of primitives to manipulate functions as
data objects, similar to the generality with which LISP
treats program and data. A full description of these
features is beyond the scope of this paper (see [2]), but
their implementation demonstrates the power of object
oriented design.

Using these language constructs, for example, we can
define a higher order function ReverseOp which takes
a function F and three vips X, Y, and Z as input (we do
not describe ReverseOp’s realization). A use of that
function might be to reverse two arbitrary connections
in a self modifying PHF program (see Figure 9).

adding higher order functions

139

'foo 'a 'b

Z

ReverseOp

Figure 9: Usage of ReverseOp

In order to implement the manipulation of vips as data
objects, we first have to add a new data type for quoted
vips (vips which are treated as data). Thus, we create
DataObj-VIP, a subclass of the abstract class DataObj.

DataObj

DataObj-l nt
DataObj-Signal
DataObj-String E Data0 bj-VI P

Figure 10: Extended DataObj class
hierarchy

A new construct, Apply, which takes a quoted vip as
input, executes it, and returns the result, is implemented
as a subclass of the abstract class VIPContent.

VlPContent

VarVlP
EnsembleVl P
FuncVlP
Apply
PrimOpVlP

PlusOpVlP
EqualOpVlP
InsertVlPOp
ConnectVlPOp
ExtractVlPOp

I
1 . . .

Figure 11 : Extended VlPContent class
hierarchy

The complement of this construct, Quote, which
transforms a vip into a data object, is implemented by
adding a subclass to V I P S h a p e , i.e.,
QuotedVlPRectShape, which inherits all of the
properties of VIPRectShape, but has a thickened
border to denote that it contains a quoted vip (Figure
11).

VlPShape

VI PRectS hape
BroadcastVl PRectShape
QuotedVlPRectShape

VlPConnector

hierarchy
Figure 12: Extended VlPShape class

Finally, the primitives necessary to fully manipulate the
vip data structure, including primitives to insert,
connect, extract, and disconnect vips are implemented as
subclasses of the abstract class PrimOpVlP (Figure 11).
Although this is certainly a nontrivial extension to the
language, the only modifications necessary are as
described above. No modifications were necessary to the
core application framework. It should be noted that these
extensions were not envisioned during the original
design of the PHF class library. The fact that we were
able to easily modify the language to incorporate these
extensions is a testament to the effectiveness of the
object-oriented design methodology.

4 Implementation Details
The current version of the PHF system supports all of
the language features described above (including support
for higher order functions) in an integrated
editodinterpreter environment. It has a Motif-GUI
interface provided by the ET++ framework and runs
under UNIX on several hardware platforms (e.g., Sun
SPARCstation, IBM RS6000, HP 9000/700, DEC
RISC, i486). Since the GUI component of PHF only
uses the protocols provided by ET++, it is a trivial
matter to port PHF to any platform supported by ET++.
The size of the C++ code that had to be written (i.e.,
excluding the classes reused from the ET++ application
framework) breaks down roughly as follows:

140

Lines of Code
PHF-Editor

Total 3900

It is important to note that constructing the portable
GUI components, which is usually considered the
primary bottleneck in developing a visual language,
took a relatively short time (approximately 2 person
weeks), since ET++ provides extensive support for
developing these GUI components independent of the
hardware platform. This number does not include the
time it took to become familiar with object-oriented
programming and the ET++ class library.

5 Conclusion
We have described the implementation of the simple data
flow based visual programming language
ProtoHyperflow, focusing on the developed application
framework components for data flow visual languages.
The object-oriented paradigm (encapsulation, inheritance,
polymorphism and dynamic binding) encourages the
developing of extensible systems and software reuse. A
precondition to being able to apply the object-oriented
paradigm is to find good abstractions (abstract classes)
that form the basis of building application frameworks
for specific domains. To this end, we developed PHF, a
minimal data flow based visual programming language.
PHF is an application framework which provides a
minimal set of features associated with a data flow based
visual programming language. We have shown that by
building on this framework, it is possible to develop
more complex languages, as we demonstrated by the
addition of higher order functions.

Our experience with building PHF on top of the ET++
framework has also shown that it is possible to
significantly decrease development time by taking
advantage of a previously existing general purpose
application framework. In addition, PHF has the
additional advantage that it is portable across all
platforms that ET++ is compatible with, since PHF
only uses the protocols provided by ET++, and does not
interact directly with the underlying windowing system
(i.e. SunWindows, X Windows). This makes PHF
considerably independent of its implementation
platform.
The PHF application framework is considered to be a
starting point for future research in the area of domain
specific application frameworks for visual langauges.
We expect that despite of known problems of object-
oriented software development (as described, for instance,
in [lo] and [l l]) qualitative and quantitative

improvements in the development of visual language
systems are possible by applying the application
framework approach.

References
[11 Eggenschwiler T, Gamma E. ET++ Swaps Manager:
Using Object Technology in the Financial Engineering
Domain; OOPSLA’92, Special Issue of SIGPLAN Notices,
Vol. 27, No. 10, 1992.
[2] Fukunaga A, Pree W, Kimura TD. Functions as Data
Objects in a Data Flow Based Visual Programming
Language; in Proceedings of the ACM Computer Science
Conference, Indianapolis, IN, 1993.
[3] Gamma E, Weinand A, Marty R. Integration of a
Programming Environment into ET++: A Case Study; in
Proceedings of the 1989 ECOOP, 1989.
[4] Hils D. A Visual Programming Language For
Visualization of Scientific Data. Ph.D. Thesis, Dept. of
Computer Science, University of Illinois, Urbana, 1992
[5] Kimura TD, Choi JW, Mack JM. A Visual
Language for Keyboardless Programming; Technical Report
WUCS-86-6, Department of Computer Science, Washington
University, St. Louis, 1986.

[6] Kimura TD. Hyperflow: A Visual Programming
Language for Pen Computers; in Proceedings of IEEE
Workshop on Visual Languages, Seattle, Washington,
1992.
[7] Lau-Kee D, Billyard A, Faichney R, Kozato Y, Otto
P, Smith M, Wilkinson I. VPL: An Active, Declarative
Visual Programming System; in Proceedings of IEEE
Workshop on Visual Languages, Kobe, Japan, 1991.
[8] Najork M, Golin E. Enhancing Show-and-Tell with
a polymorphic type system and higher order functions; in
Proceedings of IEEE Workshop on Visual Languages,
Skokie, Illinois, 1990.
[9] NeXT, Inc. 1 .O Technical Documentation:
Concepts, NeXT, Inc., Redwood City, CA, 1990.
[lo] Pree W, Pomberger G. Object-Oriented Versus
Conventional Software Development: A Comparative Case
Study; EuroMicro ‘92 Conference, Paris, France, 1992.
[l 13 Taenzer D, Ganti M, Podar S . Problems in Object-
Oriented Software Reuse; in Proceedings of the 1989
ECOOP, July 1989.
[121 Weinand A, Gamma E, Marty R. ET++ - An Object-
Oriented Application Framework in C++; OOPSLA’ 88,
Special Issue of SIGPLAN Notices, Vol. 23, No. 11, 1988.
[13] Weinand A, Gamma E, Marty R. Design and
Implementation of ET++, a Seamless Object-Oriented
Application Framework; Structured Programming, Vol. 10,
No.2, Springer 1989.
[14] Wilson DA , Rosenstein LS, Shafer D.
Programming with MacApp; Addison-Wesley, 1990.

141

