Improving the Performance of Evolutionary Optimization by
Dynamically Scaling the Evaluation Function*

Alex S. Fukunaga and Andrew B. Kahng
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095-1596, USA

{fukunaga,abk}Qcs.ucla.edu

ABSTRACT

Traditional evolutionary optimization algorithms assume a static evaluation function, according to
which solutions are evolved. Incremental evolution is an approach through which a dynamic evaluation
function is scaled over time in order to improve the performance of evolutionary optimization. In this
paper, we present empirical results that demonstrate the effectiveness of this approach for genetic
programming. Using two domains. a two-agent pursuit-evasion game and the Tracker [6] trail-following
task, we demonstrate that incremental evolution is most successful when applied near the beginning of
an evolutionary run. We also show that incremental evolution can be successful when the mtermediate
evaluation functions are more difficult than the target evaluation function, as well as when they are

easier than the target function.

1. Introduction

Genetic programming (GP) [8] is an automatic pro-
gramming method, inspired by biological evolution.
which has been successfully applied to a wide vari-
ety of program induction tasks. While genetic al-
gorithms [5] typically apply biologically-inspired evo-
lutionary operators to fixed-length representations of
task solutions, GP applies analogous operators (selec-
tion, crossover, mutation) to tree-structured programs
{such as LISP S-expressions).

Like other approaches to evolutionary optimizatior,
GP is computationally intensive: methods for acceler-
ating the learning process are necessary. A number
of techniques for improving the efficiency of GP have
been proposed. These include extensions to the basic
genetic programming model (e.g., mechanisms such
as automatically defined functions [9]) and variations
on bastc genetic operators (e.g., brood selection [17]).
These previous approaches concentrate on the search
algorithm, i.e., the mechanism by which the space of
genetic programs are explored. A complementary ap-
proach 1s to focus on the searchability genetic pro-
grams that is explored (that 1s, by the fitness function
over the space of possible genetic programs. In this
paper, we propose incremental evolution, a method for
decreasing the computational effort of evolving the so-
lution to a difficult problem by first evolving solutions
to “casier” problems.

*Partial support for this work was provided by NSF Young
Investigator Award MIP-9257982. The UCLA Commotion Lab-
oratory is supported by NSE CDA-9303148.

0-7803-2759-4/95/%4.00 © 1995 IEEE

182

The intuition behind this approach is attractive:

o It is often easier to learn difficult tasks after
simpler tasks have been learned; and

o [t may therefore be advantageous to use an “cas-
ler” fitness function when evolving solutions to
complex problems.

This intuition is consistent with the phenomenon of
scaffolding, which has been studied in psychology {15].
This paper presents an empirical study of incremen-
tal evolution applied to GP. In Section 2, we define
the technique more precisely. Section 3 then presents
experimental results demonstrating that incremental
evolution can yield performance improvements in G
VWe show that the successful use of this technique re-
quires more than simply choosing an ecasier evalua-
tion function on which to first evolve the population,
and we also present extensive empirical results that
demonstrate the complexity of obtaining performance
improvements using this technique. Related work is
discussed 1 Section 4. Finally, Section b gives some
conclusions and directions for future work.

2. Incremental Evolution

The essential idea of incremental evob:tion is to
scale the evaluation function (i.e., the “litness func-
tion” against which. say, a robot controller is evolved)
over time. with the aim of minimizing the overall time
spent evolving a controller that achieves the prescribed
task. Suppose that our goal is to generate, within a
prescribed time mit 7', a program o optimize some
evaluation function (v, The problem of incremental

http://Qcs.ucla.edu

evolution is to derive a set of intermediate evaluation
functions G = (Go, Gy, ...,Gr-1 = G) and a schedule
S = (to,tl, .. .,tk_’), such that tg+¢1+. . . +tp_1 =T
The population of controllers is sequentially evolved
using evaluation function Gy for time ¢, beginning
with G for time ¢g.

Let 7(G, S, Q) be the total processing effort (e.g.,
CPU time) required to evolve a solution of quality
Q for the task G, given the sequence of tasks G and
the schedule S. Given any final evaluation function G
and a desired solution quality @@, we wish to be able to
choose (G, S) so that 7(G, S, Q) is minimized. This is
a non-trivial, meta-level optimization, and a method-
ology for computing optimal (G, S) sequences for ar-
bitrary G is unlikely. Indeed, certain choices of (G, S)
may result in a performance degradation when com-
pared with the trivial schedule that uses ' = (&) and
8§ = (to = T), that is to say, 7(G,S, Q) > 7(¢", 8", Q).
In this paper, we seek effective heuristics for choosing
(G,S). We believe that many research issues must
be addressed in order to be able to make principled,
effective use of incremental evolution; the experiments
described below are a first step in addressing these
issues.

3. Empirical Studies

To gain initial understanding of the mechanisms
and the utility of incremental evolution, we performed
an empirical analysis of the case where there is only
one intermediate task (i.e., evaluation function) and
only one transition between evaluation functions. In
other words, we use ¥ = 1, G = (Go,G1), and
S = (to,t1 = (T —tp)); it is understood that Gy is
the final, or “target”, evaluation function G.

3.1. Task Domains

The principal task domain we study is the two-
agent differential game of planar pursuit-evasion, in-
volving a faster pursuer agent chasing a slower evader
agent.! In our experiments, the task is to evolve a
controller for the evader. The world is continuous (al-
though the simulation occurs in discrete steps), two-
dimensional, and is populated by only the pursuer and
evader (i.e., no obstacles). The evader’s evaluation
function is the number of time steps that it eludes
the pursuer, plus its final distance from the pursuer.”
In order to apply incremental evolution, we generated
pairs (Go, G1) by choosing different relative speeds of
the evader with respect to the pursuer. Clearly, all else

1Koza [8] evolved both pursuers and evaders using genetic
programming. Recently, Reynolds {13] has used coevolution
to evolve pursuers and evaders, and the merits of this task
as a testbed for the evolution of adaptive behavior have been
discussed in [11].

2To be specific: the pursuer moves a distance of 1.0 in every
time step, and there are a total of 50 time steps. The ini-
tial vector from pursuer to evader is a random lattice point in
[-5,5} x {~5,5]. The final distance is taken to be zero if the
evader is captured. Note that other relative weightings of time
steps and final distance in the evaluation function are possible.

183

being equal, it is easier for a faster evader to succeed
(achieve a higher fitness score) than a slower evader.?

Our secondary task domain is the Tracker problem
(6], a complex task inspired by the trail-following be-
havior of ants.* A hungry, artificial ant is placed in
a two-dimensional, toroidal grid world populated by
food arranged in an irregular trail, and the task is to
generate a controller that maximizes the amount of
food picked up by the ant (the ant is given a limited
amount of time during which to pick up the food).
The ant has an orientation of up, down, left or right;
it is able to sense whether there is food in the cell
ahead of it and move horizontally or vertically on the
grid. When an ant moves onto a cell containing food,
the cell is cleared (i.e., it is assumed that the ant picks
up the food).

The difficulty of the Tracker problem stems from
the irregularity and the “gaps” in the trail; see [6]
for a thorough analysis. We used the Santa Fe trail
[8] (see Figure 1, reproduced from [8]) as the target
evaluation function (G,) for optimization. To apply
incremental evolution, we first removed all gaps at
corners, to obtain the Intermediate trail. The trail
was further simplified to the Fasy trail by replacing
double gaps in the trail with single gaps. Note that
the intermediate and easy trails were shortened at the
end to maintain the total amount of food at 89 units;
thus, the maximum fitnesses achievable on all three
trails are the same.

We used steady-state GP [14] with tournament se-
lection (Figure 2). Incremental evolution was imple-
mented by changing the fitness function at generation
to.> No mutation was used. The population size was
500, and there were a total of 50 generations. The
maximum depth of the initial S-expressions was 6, and
the depth of S-expressions created by crossover was
limited to 17.

3.2. Evidence of Priming

We say that (Go,to) primes for ()
if 7((Go,G1), (20, 1), Q) < 7((G1), ({0 + 11),Q), e,
the incremental evolution reduces the time required
to reach the prescribed solution quality Q).

The performance of the GP algorithm (best fitness
achieved after 50 generations, taking the mean over

3We tested this intuition experimentally - see Section 3.2.

4 Jefferson et al. {6] addressed this problem by evolving
finite-state-automata and neural network controllers. The same
task was subsequently addressed by Koza [7] usine genetic
programming.

5Because it is a steady-state GP, by “generaticn” we mean a
“generational equivalent”, or 500 individual fitness evaluations.
To decrease the noise in the experimental values and isolate the
effects of the parameters we controlled, our code allows re-use
of the random seeds used to generate initial populations. In
other words, run #k of one experimental group (corresponding
to a single entry in each of the tables below) used the same
random seed as run #k of another experimental group. Thus,
for example, we could track the difference between (G,S) =
((Go,G1), (i0,t1 (T = to))) and (G',S') = ((G1),(T)) for
each initial population.

TTTITTT

INEE

1T

T

TITIIT

Il
Il

NSRS SRR

T

INEENERNARN

T T

1
1

Fig. 1:

The Tracker Problem. From left to right, these are the SantaFe, Intermediate, and Easy trails. These are 32 x 32 toroidal

worlds with 89 units of food arranged in an irregular trail. The dark regions indicate regions occupied by food. The light regions
indicate gaps on the trail. The ant is initially placed at the top left corner of this world.

Initialize:
Initialize population P
Initialize F' = Go
Evaluate each genome in P using fitness function F/
for generation = 1 to NumberO fGenerations
If generation = to + 1
F=a@G.
for : = 1 to PopulationSize
Select two parents by tournament selection.
Create a child by crossing the parents.
Select m € P by tournament selection.
(weighted to select lower fitnesses).
Overwrite m with the newly created child.
Evaluate child using the current fitness function F.
end for
end for

Fig. 2: Steady-State Genetic Programming with Incremental
Evolution.

30 separate runs) was measured on the pursuit-evasion
problem for each of a number of evader speeds ranging
from 5% to 100% of the pursuer speed. These served as
control data against which incremental evolution was
tested. As expected, the GP performs better when
cvaders are faster, verifying the intuition that these
are indeed “easier” evaluation functions (problems).
We assessed the effectiveness of incremental evo-
Jution under various conditions. For pursuit-evasion,
Gy was set to the evaluation function in which the
evader’s speed was 70% of the pursuer’s speed. The
GP algorithm was run for 50 generations total (i.e.,
ty + ¢ = 50). Two experimental parameters were
varied: fy was varied at 10-generation intervals (i.e.,
to = (10,20, 30,40)), and the speed of the evader in
Gy was set to 5, 10, 30, 50, 60, 70 (control), 80, 90,
and 100 (percent of the pursuer’s speed). The data
(Table 1) show the fitnesses of the best member of the
population after 50 generations. The values shown are

184

the mean of 30 trials, along with standard error.®

We first studied the effect on performance of the
time ¢o at which the fitness function is changed. Con-
sider the mean (N = 30) of the best fitness achieved
after 50 generations total (i.e. tg+¢1 = 50) as tg is var-
led at regular intervals from 10 to 40 generations. We
observed strong evidence of priming: as t is increased,
the performance curves have a unimodal peak when
to is close to the beginning of the run (< 20 genera-

“tions); as ¢y was increased, we observed a degradation

of performance to levels significantly worse than the
control values corresponding to evaders being evolved
for all 50 generations without incremental evolution
(ie., to = 50). It is interesting to note that when ¢
is less than its best value, performance is still consts-
tently higher than that of the control group. In other
words. it seems that even if incremental evolution fails
to yield improvement for a particular case, its perfor-
mance is no worse than nonincremental evolution if ¢
is relatively small with respect to the total amount of
time (o + t1).

We next sought to obtain a correlation between the
difficulty of Gy and the performance of incremental
evolution.” Table 1 shows the comparative perfor-
mances of the GP algorithm as Gy was varied between
evader speeds of 5% to 100% of the pursuer’s speed.

8For both pursuit-evasion and Tracker, each 50-generation
run took about 20 minutes of time on a Sun Sparc-5 worksta-
tion. Thus, each entry in the tables represents approximately
10 hours of CPU time.

"The precise definition of difficulty is not yoi clear, and
robust parameterizations of difficulty remain an open research
issue. Therefore, for now we informally say that (75 is more
difficult than Gy with respect to a given algorithm (e.g., a GP
optimization with fixed parameterization) if the performance
of the algorithm on (g after a given time is better than the
performance of the algorithm on G (vis-a-vis the maximum
attainable values for each evaluation function). For example, in
our experiments, the pursuit-evasion problem is easier when the
evader’s speed is higher, because if all other things are equal, it
is easier for the evader to elude the pursuer for a longer time,
and thus obtain a higher fitness value.

Relative Speed of Evader in Gg (% of Pursuer Speed)

7o (generations) 5 0 30 50 50 70 80 50 100
10 376.50 380.33 386.67 387.63 39043 | 381.73 388.23 386.83 375.87
+1.98 | £206 | £238 | £218 | £1.61 | £190 | £1.92 | +£2.27 | £ 2.37

20 377.50 378.97 385.60 388.2 387.47 | 381.73 388.77 384.23 372.8
+227 1 £226 | £285 | £242 | £205 | £1.90 | £ 277 | £2.12 | £ 2.83

30 368.57 372.13 376.3 383.87 382.87 | 381.73 382.23 380.63 372.33

+ 2.85 + 1.66 + 1.66 + 2.05 + 1.77 + 1.90 + 2.51 + 2.18 + 2.58

40 358.27 361.83 377.77 378.73 379.07 | 381.73 376.17 | 379.47 357.73

+2.29 +2.18 | £298 | £ 233 | £186 | £1.90 | +£ 235 + 206 | £ 2.12

Table: 1:

Pursuit-Evasion: Performance of incremental evolution vs. ¢t = (10,20,30,40) generations, and evader speeds of 5-100% of

pursuer’s speed. ¢ = 50 - tp. Fitnesses of best member of population after 50 generations {mean of 30 runs + standard error) are
shown. The control is the case where the Go = Gy = (evader’s speed = 70% of pursuer’s speed), for which fitness is 381.73%1.90

(note that this is the same as t9=0).

Surprisingly, the performance seems to have greatest
dependence on the degree of similarity between Gy (in
this domain, similarity means that the speeds of the
evader in G and G are similar), and the performance
is bimodal around G;.2 There are two maxima on
either side of Gy = (&1 (the control), and performance
drops as Gg becomes more dissimilar to G1. In other
words, more difficult tasks can prime easier tasks. We
then studied evader speeds between 65% and 75%
in more detail to obtain a finer-grained view of the
region where the maxima lie (Table 2). Statistically
significant improvements in performance were found,
especially for ¢ = 10,20.°

Relative Spd of Evader In Gg {% Pursuer Spd)
10 65 67 70 73 75
10 385.43 387.77 381.73 394.23 389.47
4+ 192 | £ 189 | £190 | 199 } £ 273
20 385.50 383.80 381.73 389.43 387.00
+ 1.92 4 1.78 + 1.90 + 2.15 + 2.23
30 382.57 381.47 381.73 388.90 383.97
+ 1.81 4 1.94 + 1.90 + 2.33 + 2.16
40 382.10 378.43 381.73 380.73 374.90
+ 1.93 + 1.82 + 1.90 + 2.19 + 2.11
Table: 2: Pursuit-Evasion: Performance of incremental evo-

lution vs. to = (10,20,30,40) generations and evader speeds of
65-75% of pursuer’s speed. The control is the case where the Go
= G = (evader’s speed = 70% of pursuer’s speed). ¢; = 50 -
to. Fitnesses of best member of population after 50 generations
(mean of 30 runs = standard crror) are shown.

To ascertain that priming could be observed for
other values of G, and to observe the performance
as tg was varied, we next let Go = (evader speed =
70% of pursuer speed), and varied Gy between 10%
to 100% of the pursuer’s speed. Once again, {; was
varied between 10 and 40.

Table 3 shows the results of this experiment, which

8 We initially hypothesized that it would be better to use Gg
which is either easier or harder than Gi, and that the perfor-
mance curve would be unimodal to one side of Gy.

9For the given sample size (N = 30), the differences in per-
formance of the GP are statistically significant at a 95% con-
fidence level when there is no overlap of the intervals bounded
by the best fitness £ standard error.

indicate that priming occurs for various values of G1,
and that the relationship of performance to t, is sim-
ilar for other values of Gy (i.e., our previous results
seem to be general for this domain). Again, statisti-
cally significant results for a 95% confidence interval
can be seen in the table.

Relative Spd. of Evader in G; (% Pursuer Spd)
1) 10 50 60 70 80 100
Q 6.90 159.03 242.67 381.73 526.60 668.07
+ 006 | £080 | £103 | £1.90 | £ 0.76 | £ 0.98
10 6.97 160.33 246.23 381.73 530.47 670.00
+ 006 | £082 | £140 | £190 | £ 088 | + 0.98
20 7.00 161.93 246.37 381.73 529.53 669.23
+ 0.00 + 0.69 + 1.55 + 1.90 + 0.81 + 1.15
30 7.00 160.33 247.33 381.73 528.83 668.33
+ 0.00 + 0.86 + 1.31 + 1.90 + 1.03 + 1.03
40 6.67 157.80 238.87 | 381.73 528.37 666.83
+009 | £082 | £109 | £190 | 4+ 1.05 | £ 0.99

Table: 3: Pursuit-Evasion: Performance of incremental evolu-
tion vs. to = (0,10,20,30,40) generations and evader speeds of
Go = 70%, G1 = 10-100% of pursuer’s speed, and tg = 0. The
control is the case where the Gog = G1. t; = 50 - {p. Fitnesses
of best member of population after 50 generations (mean of 30
runs + standard error) are shown.

Finally, we studied the performance of the in-
cremental evolution method in the Tracker do-
main, for all pairs of (Go,G,y), where Go,G1 €
(Easy, Intermediate, SantaFe).

Table 4 shows fitnesses of the best member of the
population after 50 generations (mean of 30 runs =+
standard error). The results are similar to those for
pursuit-evasion (statistically significant performance
improvements were found).'®

An additional interesting observation is that there
seems to be no “ordering” relationship between pairs
of tasks (Gg, G1) with respect to priming. That is, if
(Go,to) primes for Gy for some tg, then it is possible
that (G, 1) primes for Gg.

10As with the pursuit-evasion domain, we verified that the
Easy trail was easier than the Intermediate trail, which in turn
was easier than the Sante Fe trail (see the “Control” row in
Table 4).

185

Trails used in Gg and G
to (Generations) | Go=I, G1=E | Go=SF, Gi=E [Gg=E, Gy=I | Go=SF, Gi1=I [Go=E, G;=8F | Go=I, G;=SF
0 (Control) 75.53 75.53 68.10 68.10 62.17 62.17
+ 2.09 + 2.09 + 1.77 + 1.77 + 1.53 + 1.53
10 73.97 70.80 70.87 70.37 67.63 63.33
+ 2.04 + 2.19 + 1.96 + 2.05 + 1.92 + 1.85
20 72.23 72.10 74.03 66.20 64.07 61.17
+ 1.92 + 1.66 + 1.94 + 1.79 + 1.71 + 1.70
30 71.10 69.53 66.60 68.03 61.70 61.23
+ 1.90 + 1.87 + 1.83 + 2.09 + 2.02 + 1.56
40 67.37 67.27 63.93 66.17 60.97 60.13
+ 1.89 £ 199 + 2.15 + 227 + 2.22 + 1.64
50 62.80 58.33 51.07 56.53 48.27 59.47
+ 2.02 + 2.53 + 204 + 2.24 + 2.95 + 2.00

Table: 4: Tracker: Performance of incremental evolution vs. t0=(10,20,30,40,50) and (Go, G1) € (Easy, Intermediate, SantaFe). E
= FEasy, I = Intermediate, SF = SantaFe. Fitnesses of best member of population after 50 generations (mean of 30 runs + standard

error) are shown.

4. Related Work

Previous work has addressed the problem of opti-
mization in a dynamic environment ([12, 2, 10]. These
researchers have considered the problem of adapting
to a given dynamic environment. Our work differs fun-
damentally in that we consider the problem of making
the environment dynamic in order to improve perfor-
mance.

Recently, Harvey et al. [3, 4] have proposed this
strategy of incremental evolution. They reported that
evolving a neural network controller to visually guide
a robot toward a small target in the environment took
less total computational effort if the controllers were
first evolved using a larger target. Our work differs
from that of Harvey et al. [3, 4] in at least two major
respects: (i) their representation scheme is different
(a dynamical neural network), and (ii) they have only
considered incremental evolution from an easier task
to a harder task. As we have discovered, it is possible
for incremental evolution to be successful when the
intermediate task is more difficult than the final task.

Another somewhat related technique is the use of
a multi-phasic fitness environment [1]. In [1], the
task (collection of objects in a grid world) was sep-
arated into two phases: In the first phase (mapping),
the agent looks for valuable objects and “remembers”
their location, and in the second phase (planning),
the agent plans a sequence of actions (consisting of
movements and digging actions). The genetic program
is separated into two branches'! - the first branch
is active during the mapping phase, and the second
branch is active during the planning phase. This
approach differs from incremental evolution in that
the user intervenes to identify the subproblems that
must be solved and manually impose a structure on
the solution.

Incremental evolution also differs from previously
suggested heuristics regarding test case selection. For
example, Koza [8] suggested that test cases should be

!1Recall that a genetic program is an s-expression, which Is
naturally represented as a tree.

chosen to be a representative sample of the possible
inputs to the genetic program.!? In related work in
evolutionary computation, Shultz [16] has studied bi-
asing of test cases in order to improve performance in
a genetic algorithm.

Last, we note that our approach to optimizing per-
formance using incremental evolution also differs from
co-evolution. Co-evolution maintains a high selective
pressure by evolving test cases that become more dif-
ficult over time by adapting to the population being
evolved. This is particularly useful after the popula-
tion has been evolving for a while, as it avoids the low
selective pressure that can result when a static test
case 1s used (i.e., all members of the population have
adapted to the test case). However, the initial popu-
lation of test cases may already be relatively difficult,
and 1t may be possible to improve performance by
starting with an easier population of test cases. Recall
that our results indicate that incremental evolution is
most effective near the beginning of an evolutionary
run.

5. Discussion and Future Work

Our experiments with incremental evolution have
shown that incremental evolution can be used as a
technique for improving the performance of GP. We
have observed that for two-step incremental evolution,
statistically significant performance improvements can
be gained by choosing Gy which is relatively similar
to Gy, and transitioning between the two at an early
stage of the optimization.

Our experiments have yielded some very interest-
ing results, e.g., that performance may be dependent
on the similarity, rather than relative ease or diffi-
culty, of intermediate evaluation functions to the final
evaluation function. Tt is clear that successful use of
incremental evolution requires more than the simple
intuition that it is easier to learn difficult tasks after

2In many cases, the space of inputs that can be given to a
genetic program can be much larger than the feasible size of a
set of test cases.

186

learning easier tasks. More work is necessary in order
to determine more precisely the relationship between
the intermediate evaluation function and the perfor-
mance of the technique, and to fully understand the
mechanisms that lead to performance gains. The un-
derstanding of these mechanisms will enable us to de-
rive more useful heuristics for applying the technique.

We have attempted to obtain a stronger correlation
between the relationship between Gy and G and per-
formance. This has included studying the variance in
the fitnesses of the members of the population, as well
as observing the rate of convergence of the GP with
respect to G; when a population was evolved for Go.13
Unfortunately, we have not yet been able to obtain a
significant correlation. In future work, we plan to to
track the genetic diversity (we have only considered
phenotypic variance so far) of populations in order to
shed some light on the underlying mechanism for prim-
ing. One factor that has made this analysis difficult so
far is our use of genetic programming, for which the
space of genotypes is very large, (i.e., there are many
redundant solutions), and for which the neighborhood
structure is less easily intuited than that of a stan-
dard genetic algorithm. Since there is every reason to
believe that the underlying mechanism of incremental
evolution is largely independent of the peculiarities
of genetic programming, we are currently investigat-
ing the incremental evolution mechanism using genetic
algorithms with fixed-length genotypes. This should
enable a better understanding of the mechanism. Ulti-
mately, we will scale up this research effort to analyze
incremental evolution with more than one transition
between test cases. This will involve many open issues
regarding the optimization of the transition schedule
between test cases.

Finally, the utility of incremental evolution must
be agsessed in additional domains. The technique
seems to be naturally applicable in task domains (such
as pursuit-evasion and Tracker) where controllers are
generated for agents that perform tasks in domains
whose “difficulty” is easily parameterizable (using
domain-specific knowledge). More work is necessary

2 We performed the following experiment: Let Fit(/, G) be
the fitness value of a genetic program I according to the evalu-
ation function ¢, and Best O f(Pop,t,) be the member [*
of population Pop at time ¢ with highest fitness according
to (i — in other words, I* = Best_Of{Pop,t,G) maximizes
Fit(I,G) over all I € Pop. A population Popy was evolved
in the usual manner using evaluation function Gg for t = 25
gencrations. However, at each generation 1 < ¢ < 25 we
also evaluated the current population using evaluation function
Gy, and recorded the value of Fit(Best O f(Pop,i,.G1),G1).
In other words, we evolved the population using G as the
evaluation function, but at every generation we also computed
the fitness of the best individual in the population according
to (/; and saved this value. Using the same random seed
and control parameters, we then evolved a population Popy
for ¢ 30 generations using G as the evaluation function
(note that at generation 0, Popy is identical to Popg). For all
values of {, we compared Fit{Best O f(Popo,t,(1),G1) with
Fit(Best. O f(Popy.t,G1), Gy).

187

in order to better formalize and exploit this notion of
domain difficulty.

References

[1] D. Andre. FEvolution of mapmaking: Learning, plan-
ning and memory uvsing genetic programming. In Proc.
IEEE Int. Conf. Evolutionary Computation, pages 250—
255, 1994.

H. Cobb and J. Grefenstette. Genetic algorithms for track-
ing changing environments. In Proc. Fifth International
Conference on (enetic Algorithms, pages 523~530, 1993,

. Harvey, P. Husbands, and D. Cliff. Issues in evolutionary
robotics. In From Animals to Animats 2: Proceedings
of the Second International Conference on Simulation of
Adaptive Behavior, pages 364-374, 1992.

I. Harvey, P. Husbands, and D. CLff. Seeing the light: Ar-
tificial evolution, real vision. In From Animals to Animats
8: Proceedings of the Third International Conference on
Adaptive Behavior, pages 392-401, 1994.

J. Holland. Adaptation in natural and Artificial Systems.
University of Michigan Press, 1975.

D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. I'lowers,
R. Korf, C. Taylor, and A. Wang. Evolution as a theme in
artificial life: The genesys/tracker system. In C. Langton,
C. Taylor, J. Farmer, and S. Rasmussen, editors, Artificial
Life II, pages 549-577. Addison-Wesley, 1992,

J. Koza. Genetic evolution and co-evolution of computer
programs. In C. Langton, C. Taylor, J. I'armer, and S. Ras-
mussen, editors, Artificial Life 11, pages 603-629. Addison-
Wesley, 1992,

J. Koza. Genctic Programming: On the Programming of
Computers By the Mcans of Natural Selection. MIT Press,
1992

J. Koza. Genetic Programming 11: Automatic Disconery
of Reusable Programs. MIT Press, 1994.

[10] M. Littman and D). Ackley. Adaptation in constant utility
non-stationary environments. In Proc. Fourth Interna
tional Conference on Genetic Algorithins, pages 136-142,
1991.

[11] G. F. Miller and D. Cliff. Protean behavior in dypamic
games: Arguments for the co-evolution of pursuit-evasi
tactics. In D. CHff, . Husbands, J.-A. Meye
Wilson, editors, From Animals to dnimats 3: 9
of the Third Internaiional Conference on Adaplive Behan-
107, 1994,

(12) C. Ramsey and J. Grefenstette. Case-based initialization
of genetic algorithms. In Proe. Fifth International Confer-
ence on Genetic Algorithms, pages 84-91, 1993,

[13] C. Reynolds. Competition, coevolution and the game of
tag. In Artificial Life TV, 1994.

[14] C. Reynolds. An evolved, vision-based model of of le
avoidance behavior. In C. Langton. editor, Artificial Lifc
[11, pages 327-316. Addison- Wesley, 1994,

[15] J. Rutkowska. Emergent functionality in hume» infants.
In From Animals to Animats3: Procecdings e Third
International Conference on Simulalion of “uapbive Be-
havior, pages 179-188. MI'T' Press, 1994,

[16] A. C. Schultz. Adapting the evaluation space to improve
global learning. In Proc. Fourth International Conference
on (Genetic Algorithms, pages 158-164, 1991,

[17] W. Tackett and A. Carmi. The unique implications of
brood ction for genetic programming. In Proceedings

of the 1954 IEEE World Congress on Computational [n-

telligence, TEEE Press, 1994,

