
Improving the Performance of Evolutionary Optimization by
Dynamically Scaling the Evaluation Function*

Alex S. Fukunaga and Andrew B. Kahng
Computer Science Department

University of California, Los Angeles
Los Angeles. C:l 90095-1596. 1-SA

{ fukunaga.abk} Qcs.ucla.edu

.?. BSTR A CT

Traditional evolutionary optimization algorithms assume a static evaluation function, according t o
which solutions are evolved. Incxmer i ta l e z o i u f i o r t is an approach through which a dynamic evaluation
function is scaled over time in order to improre tlie perforniance of evolutionary optimization. In t,his
paper, we present empirical results tha t demonstrate the effpctivrness of this approach for genetic
programming. Using two domains. a two-agent pursuit-evasion game and the Tracker [6] trail-following
ta.sk, we demonstrate tha t incremental evolution is most. succrssful when applied near the beginning of
an evolutionary run. We also show tha t incremental evolution can be successfiil when tlir int,ermedint.e
cvaluation functions are more difiicult, than the target evaluation funct,ion, as wc11 RS whcn t,liey arc’
ettsicr t,han [,he t,arget function.

1. Introduction
Genetic programming (GP) [8] is an automatic pro-

gramming method, inspired by biological evolution.
which has heen successfully applied to a wide vari-
ct,y of‘ prograrii induction t,asks. \Vliilc genetic ai-
gor i t h i s [51 t y p icnll y tip p 1 y biologic a1 I y- 1 ii s p i r et1 c yo-
Iiit,ionary op(:rittors to fixed-length representations of
thsk solutioiis, GI) applies analogous operators (selec-
tion, crossover, mutation) t o t,ree-structured programs
(such ;is LISP S-c,spressions).

Lilic. ot ,hcr approaches to evolutionary optiriiizatioii,
(;I’ is coiiipiitat,ioiially intensive: riietlrods for acce1t.r-
iit>ing t.he lrarriing process iwc necrssary. il niiniher
of‘ t .t>cliiiiqiirs for improving t,lic, efficieiicy of (;I1 have
hwii prol)osed. These inchidc extensions to t,he basic

amrriing inodcl (e .g . , mi~hanis i i i s such
t l iy definecl fiinctioris [$I]) and variations
tic operators (e.g.$ 1)rootI selection [IT])

‘I‘l~(~sc~ prcvious npproaclics concentratc on tlie search
nl,qorithrn, i.e., the iiicchariism by i v h i c h the spacc of
genetic prograrns arc cxplorctl. X coniplenici i txy ~113-
i’roach is t o fociis oil t,hc searcliabilit>- genetic pro-
granis t,liat is explored (that is, by the fitness function
ovc’r t l i r ~ s ~) w c o f possible gcrietic programs. I n t h i s
i)apcr , \v<: propose zncrcrrterrfal c t~olu tzor t . a method for
dcc:rrasing t he c.oiiipiit,at,ion;rl effort, of (.volving the so-
Iutioii t h it difficiili, prolil<~ni liy first c,vol\ ing solutions
1 o “c~asicr” plol)lt~ins.

‘Pnrtial support tor :his work was providcd b y N5F Young
Irivrst.ig,ztor A w a r d MIP
(iratory is supp<>rt mi h y

0-7803-2759-4/95/$4.00 0 1995 IEEE 182

http://Qcs.ucla.edu

evolution is t o derive a set of intermediate evaluation
functions G = (Go, GI , . . . , Gk-1 = d‘) and a schedule

The population of controllers is sequentially evolved
using evaluation function G k for time t k , beginning
with Go for t ime t o .

Let T (G , S, Q). be the total processing effort (e.g.,
CPU time) required to evolve a solution of quality
Q for the task G, given the sequence of tasks G and
Ihe schedule S. Given any final evaluation function G
and a desired solution quality Q , we wish to be able to
choose (G, S) so that T (G , S, Q) is minimized. This is
a non-trivial, meta-level optimization, and a method-
ology for computing optimal (G, S) sequences for ar-
bitrary G is unlikely. Indeed, certain choices of (G , S)
may result in a performance degradation when com-
pared with the trivial schedule that uses G’ = (G) and
S’ = (t o = T) , that is to say, T (G , S,p) > T(G’, S’, Q).
In this paper, we seek effective heuristics for choosing
(G, S). We believe tha t many research issues must
be addressed in order t o be able to make principled,
effective use of incremental evolution; t,he experiments
described below are a first step in addressing these
issues.

3. Empirical Studies
‘To gain initial understanding of the mechanisms

and the utility of incremental evolution, we performed
an empirical analysis of the case where there is only
one intermediate task (i.e., evaluation function) and
only one transition between evaluation functions. In
other words, we use k = 1, G = (Go,Gl), and
S = (t o , t l (7’ - t o)) ; it is understood that GI is
the final, or “target” ~ evaluation funct,ion G.
3.1, Task Domains

The principal task domain we study is the two-
agent differential game of planar pursuit-evasion, in-
volving a faster pursuer agent chasing a slower evader
agent,.’ In our experiments, the task is to evolve a
controller for the evader. The world is continuous (al-
though the simulation occurs in discrete steps), two-
dirnensional, arid is populated by only the pursuer and
evader (i.e., no obstacles). The evader’s evaluation
function is the number of t h e steps that it eludes
the pursuer, plus its final distance from the pursuer.2
In order to apply incremental evolution, we generated
pairs (Go, G I j by choosing different relative speeds of
the evader with respect t o the pursuer. Clearly, all else

s = (t o , t l , . . . , tk-I), such tha t t o + 2 1 + . . .+tk-l T.

‘Koza [8] evolved both pursuers and evaders using genetic
programming. Recently, Reynolds 1131 has used coevolution
to evolve pursuers and evaders, and the merits of this task
as a testbed for the evolution of adaptive behavior have been
discussed in [ll].

27h be specific: the pursuer moves a distance of 1.0 in every
time step, and there are a total of SO time steps. The ini-
tial vector from pursuer to evader is a random lattice point in
[- S , S] x [- S , S] . ‘The final distance is taken to he zero if the
evader is captured. Note that other relative weightings of time
steps and final distance in the evaluation function are possible.

being equal, it is easier for a faster evader to succeed
(achieve a higher fitness score) than a slower e ~ a d e r . ~

Our secondary task domain is the Tracker problem
[6], a complex task inspired by the trail-following be-
havior of a n t s 4 A hungry, artificial ant is placed in
a two-dimensional, toroidal grid world populated by
food arranged in an irregular trail, and the task is to
generate a controller that maximizes the amount of
food picked up by the ant (the ant is given a limited
amount of t ime during which to pick up the food).
The ant has an orientation of up, down, left or right;
it is able tto sense whether there is food in the cell
ahead of it, and move horizontally or vertically on the
grid. When an ant moves onto a cell containing food,
the cell is cleared (i.e., it is assumed tha t the ant picks
up the food).

The difficulty of the Tracker problem stems from
the irregularity and the “gaps” in t,he trail; see [GI
for a thorough analysis. We used the Santa Fe trail
[8] (see Figure 1, reproduced from [SI) as the target
evaluation function (GI) for optimization. To apply
incremental evolution, we first removed all gaps ai,
corners, t o obtain the Intermediate trail. ‘The trail
was further simplified to the Easy trail by replacing
double gaps in the trail with single gaps. Not,e that
t,he intermediate arid easy trails were shortencd a t thc
end to maintain the total amount of food a t 89 units;
t,hus, the maximum fitnesses achievable on all three
trails are the same.

We used steady-state G P [I41 with tournament, se-
lection (Figure 2). Incremental evolution was imple-
mented by changing the fitness function at generation
t o . 5 No mutation was used. The population size was
500, and tlhere were a total of 50 generations. The
maximum depth of t,he initial S-expressions was 6 , a.nd
the depth of S-expressions created by crossover was
limited to 17.
3.2. Evidence of Priming

We say that (Go, t o) pri77-2es for GI
if .r((Go, G I) , (t o l t i) , 0) < ~ ((G I) , (t o +, t i) , Q), i.e.,
the incremental evolution reduces lhe t ~ r n e required
to reach the prescribed solution quality &.

The performance of the GP algorithm (best fitness
achieved after 50 generations, taking the mean over

3We tested this intuition experimentally - see Section 3.2.
4Jefferson et al. [6] addressed this problem by evolving

finite-state-automata and neural network controllcrs. The same
task was subsequently addressed by Koza [7] u s i 7 - m genetic
programming.

’Because it is a steady-state GP, by “generatic-i ’ we mean a
“generational equivalent”, or 500 individual fitness evaluations.
To decrease the noise in the experimental values and isolate the
effects of th,e parameters we controlled, our code allows re-use
of the random seeds used to generate initial populations. In
other words, run # k of one experimental group (corresponding
to a single entry in each of the tables below) used the same
random seed as run # k of another experjment,al group. Thus,
for example, we roiild track the difference between (B , S) =

each initial popnlation.
((G , , G ?) , (t o , t i = (7 ‘ - t o))) and (B’,S’) = ((Gi) , (T)) for

183

I-m!!!! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! I / I! ! ! ! ! ! i ! ! : . ! ! ! ! ! ! ! ! ! ‘ I ! ! ! ! I m! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! I ” ! ! ! ! ! ! ! ! I

Fig. 1: The Tracker Problem. From left to right, these are the S a n t a F e , In termedzate , and E a s y trails. These are 32 x 32 toroidal
worlds with 89 units of food arranged in an irregular trail. The dark regions indicate regions occupied by food. The light regions
indicate gaps on the trail. The ant is initially placed a t the top left corner of this world.

Initialize:
Initialize population P
Initialize F = Go
Evaluate each genome in P using fitness function F

for g e n e r a t z o n = 1 t o N u m b e r 0 fGeneratzons
If generat ion = to + 1

for i = 1 to Popula t ionSzze
F = G , .

Select two parents by tournament selection.
Create a child by crossing the parents.
Select m. E P by tournament selection.

(weighted to select lower fitnesses).
Overwrite m with the newly created child.
Evaluate child using the current fitness function F .

clid for
3nd for

Fig. 2 :
Evolution.

Steady-State Genetic Programming with Incremental

30 separate runs) was measured on the pursuit-evasion
problem for each of a number of evader speeds ranging
from 5% t o 100% of the pursuer speed. These served as
control dat,a against which incremental evolution was
tested. As expected, the G P performs better when
evaders are faster, verifying the intuition that these
are indeed “easier” evaluation functions (problems).

We assessed the effectiveness of incremental evo-
lution under various conditions. For pursuit-evasion,
GI was set t o the evaluation function in which the
evader’s speed was 70% of the pursuer’s speed. The
G P algorithm was run for 50 generations total (i.e.%
t o + t l = 50). Two experimental parameters were
varied: to was varied a t 10-generation intervals (i.e.>

= (1 0 , 2 0 , 3 0 , 4 0)) , and the speed of t.he evader in
Go was set t,o 5, 10, 30, 50, 60, T O (control), 80, 90,
and 100 (percent of the pursuer’s speed). The dat,a
(Table 1) show the fitnesses of the best, member of the
populat,ion after 50 generations. The values shown are

the mean of 30 trials, along with standard error.6
\Ve first studied the effect on performance of the

time t o at which the fitness function is changed. Cori-
sider the mean (.\- = SO) of the best fitness achieved
after 50 generations total (i.e. t o + t 1 = 50) as t o is var-
ied at regular intervals from 10 to 40 generations. We
observed strong evidence of priming: as t o is increased,
the performance curves have a unimodal peak when
t o is close to the beginning of the run (5 20 genera-
tions); as t o was increased, we observcd a degradation
of performance to levels significantly worse than the
control values corresponding to evaders being evolved
for all :io generations without incremental evolution
(i .e . , t o = 50) . It is interesting to not,e t ha t when 1:)
is less than its best value, performance is still consis-
tently higher than (hat of t,he control group. in other
words. it seems that even if incremental evolution fails
to yield iniprovpment for a particnlar case, its p r f o r -
inance is 110 worse than nonincremental evolut,ion if fcl

is relat,ively small with respect t o the t,ol,al amount, of
time (t o + t i) .

lye next sought t.o obtain a correlation between tmhc,
difficulty of Go and the perforinancc of increriient,ai
evolution. ’ Table 1 shows the comparative perfor-
mances of the GP algorithm as Go was varied between
evader speeds of 5%1 t.o 100% of thc piirsuer‘s specd.

‘For both pursuit-evasion arid Tracker, each 50-generation
run took about 20 minutes of time on a Sun Sparc-S worksta-
tion. Thus. each entry in the t.ables represents approximately
10 hours of C P U time.

‘The precise definition of dzftculty is not y’ elixir, and
robust parametrrizations of difficulty remain an open rrscarch
issue. Therefore. for now we informally say that (:o is mom
d z f i c d f than G I kith respect to a givrw algorithm (e .g. , a G I >
optimization with fixrd parameterization) if the pmformance
of the algorithm on G o after a given time is bet.ter than the
performance of the algorithm on GI (vis-a-vis the maximum
attainable values for each evaluation function). For example, in
our experiments. the pursuit-evasion problem is easier when the
evader’s speed i s higher. becausr if all othr i - things a r r equal. it
is easier for the evader to elude the pursur-r for a longer t,ime,
and thus obtain a higher fitness valric.

184

Table: 1: Pursuit-Evasion: Performance of incremental evolution vs. to = (10,20,30,40) generations, and evader speeds of 5.100% of
pursuer’s speed. t l = 50 - to . Fitnesses of best member of population after 50 generations (mean of 30 runs + standard error) are
shown. The control is the case where the Go = G1 = (evader’s speed = 70% of pursuer’s speed), for which fitness is 381.73f1.90
(note that this is the same as t o = O)

Surprisingly, the performance seems to have greatest
dependence on the degree of similarity between Go (in
this domain, similarity means tha t the spreds of the
evader in GO and G1 are similar), and the performance
is bimodal around G1.8 There are two maxima on
either side of GO = GI (the control), and performance
drops as GO becomes more dissimilar t o GI. I n other
words, more dzf icul t tasks can prame easzer tasks. We
then studied evader speeds between 65% and 75%
in more detail t o obtain a finer-grained view of the
region where the maxima lie (Table 2). Statistically
significant improvements in performance were found,
especially for t o = I O , ~ O . ~

40 382 10 37843 381 73 380 73 37490
f - 1 9 3 + 1 8 2 f 1 9 0 + 2 1 9 k 2 1 1

Table: 2: Pursuit-Evasion: Performance of incremental evo-
lution vs. t o = (10,20,30,40) generations and evader speeds of
65.75% of pursuer’s speed. The control is the case where the Go
= GI = (evader’s speed = 70% of pursuer’s speed). t i = 50 -
t o . Fitnesses of best member of population after 50 generations
(mean of 30 runs i standard error) are shown.

To ascertain tha t priming could be observed for
other values of GI, and to observe the performance
as t o was varied, we next let Go = (evader speed =
70% of pursuer speed), and varied G I between 10%
to 100% of the pursuer’s speed. Once again, t o was
varied between 10 and 40.

Table 3 shows the results of this experiment, which
~~~~ ~~ ~ 

initially hypothesized that it would be better to use Go 
which is either easier or harder than G I ,  and that the perfor- 
mance curve would be unimodal to one side of Go. 

’For the given sample size ( N  = 30) ,  the differences in per- 
formance of the G P  are statistically significant at  a 95% con- 
fidence level when there is no overlap of the intervals bounded 
by the best fitness f standard error. 

indicate that  priming occurs for various values of GI ,  
and that  the relationship of performance to  io is sim- 
ilar for other values of G 1  (i.e.) our previous results 
seem to  be general for this domain).  Again, statisti- 
cally signi:hcant rpsults for a 95% confidence interval 
can be seen in the table. 

Table: 3: Fursuit-Evasion: Performance of incremental evolu- 
tion vs. to  -= (0,10,20,30,40) generations and evader speeds of 
GO = 70%, ‘GI = l O - l O O %  of pursuer’s speed, and t o  = 0. The 
control is the case where the Go = G I .  t l  = 50 - t o .  Fitnesses 
of best member of population after 50 generations (mean of 30 
runs f standard error) are shown. 

Finally., we studied the performance of the in- 
cremental evolution method in the Tracker do- 
main,  for all pairs of (Go,G1), where Go,G‘1 E 
(Easy ,  I d e r m e d i a t e ,  S a d a F e ) .  

Table 4: shows fihesses of the hest member of the 
population after 50 generations (mean of 30 runs i 
standard error). The  results are similar to those for 
pursuit-evasion (statistically significant performance 
improvements were found).” 

An additional interesting observation is t.hat there 
seems to  Ibe no “ordering” relationship brt,ween pairs 
of tasks ( I S ~ ~ G ~ )  with respect to priming. T h a t  is, if 
(Go,to) primes for GI for some t o ,  then it is possible 
that  (GI,tb) primes for GO. 

“As with the pursuit-evasion domain, we verified that the 
Easy trail was easier than the Intermediate trail, which in turn 
was easier than the Santa Fe trail (see the “Control” row in 
Table 4) .  

185 



Table: 4: Tracker: Performance of incremental evolution Y S .  to=(10.20,30.40,50) and (Go, GI) E ( E a s y ,  I n t e r m e d i a t e ,  SantaFe) .  E 
= E a s y ,  I = I n t e r m e d i a t e ,  SF = San taFe .  Fitnesses of best member of populationafter 50 generations (mean of 30 runs + standard 
error) are shown 

4. Related Work 
Previous work has addressed the problem of opti- 

mization in a dynamic environment ( [ la ,  2, lo]. These 
researchers have considered the problem of adapting 
to a given dynamic environment. Our work differs fun- 
damentally in tha t  we consider the problem of makzng 
the environment dynamic in order to improve perfor- 
mance. 

Recently, Harvey et al. [3, 41 have proposed this 
strategy of zncremental evolutzon. They reported that  
evolving a neural network controller to visually guide 
a robot toward a small target in the environment took 
less total computational effort if t,he controllers were 
first evolved using a larger target. Our work differs 
from that  of Harvey et al. [3, 41 in a t  least two major 
respects: (i)  their representation scheme is different 
(a  dynamical neural network), and (ii) t.hey have only 
considered incremental evolution from an easier task 
to a harder task. As we have discovered, it is possible 
for incremental evolution to  be successful when the 
intermediate task is more dificult than the final task. 

Another somewhat related technique is the use of 
a multz-phaszc fitness envzronment [l] .  In [ I ] ,  the 
t,ask (collection of objects in a grid world) was sep- 
arated into two phases: In the first phase (mapping).  
the agent looks for valuable objects and "remembers" 
their location, and in the second phase (planning),  
the agent plans a sequence of actions (consisting of 
movements and digging actions). The genetic program 
is separated into two branches" - the first branch 
is active during the mapping phase, and the second 
branch is active during the planning phase. This 
approach differs from incremental evolution in that  
the user intervenes to  identify the subproblems that  
must be solved and nianually impose a structure on 
the solution. 

Incremental evolution also differs from previously 
suggested heuristics regarding test case selection. For 
example, Koza [8] suggested that  test cases should be 

"Recall t.hat a genetic program is an s-expression, which is 
naturally represented as a tree. 

chosen to  be a representative sample of the possible 
inputs to the genetic program." In related work in 
evolutionary computation, Shultz [16] has studied bi- 
asing of test cases in order t o  improve performance in 
a genetic algorithm. 

Last, we note that our approach to  optimizing per- 
formance using incremental evolution also differs from 
co-evolution. Co-evolution maintains a high selective 
pressure by evolving test cases tha t  become more dif- 
ficult over t ime by adapting to  the population being 
evolved. This is particularly useful after the popula- 
tion has been evolving for a while, as it avoids the low 
selective pressure that  can result when a static test 
case is used (i.e..  all inembers of the population have 
adapted to the test case). However, the initial popu- 
lation of test cases may already be relatively difficult, 
and it may be possible to improve performance by 
starting with an easier population of test, cases. Recall 
that  our resulk indicate tha t  incremental evolution is 
most effective near the beginning of an evolutionary 
run 

5 .  Discussion and Future Work 
Our experiments with incremental evolution have 

shown that incremental evolution can be used as a 
technique for improving the performance of G P. We 
have observed that for two-step incremental evolution, 
statistically significant performance improvements can 
be gained by choosing Go which is relatively similar 
to GI ,  and transitioning between the two a t  an early 
stage of the optimization. 

Our experiments have yielded some vei y iriterest- 
ing results, e .g . ,  that  performance may bc dependent 
on the similarity. rather than relative case or diffi- 
culty, of intermediate evaluation functions to  the f ina l  
evaluation function. It is clear that  successful use of 
incremental evolution requires more than the simple 
intuition that  i t  is easier t o  learn difficult tasks after 

121n many cases. the space of inputs that can be given to a 
grnetic program can be much larger than the feasible size of a 
set of test cases. 

186 



learning easier tasks. More work is necessary in order 
to determine more precisely the relationship between 
the intermediate evaluation function and the perfor- 
mance of the technique, and to  fully understand the 
mechanisms that  lead to performance gains. The un- 
derstanding of these mechanisms will enable us to de- 
rive more useful heuristics for applying the technique. 

We have attempted to  obtain a stronger correlation 
between the relationship between Go and G1 and per- 
formance. This has included studying the variance in 
the fitnesses of the members of the population, as well 
as observing the rate of convergence of the GP with 
respect t o  GI  when a population was evolved for 
Unfortunately, we have not yet been able to obtain a 
significant correlation. In future work, we plan to to 
track the genetic diversity (we have only considered 
phenotypic variance so far) of populations in order t o  
shed some light on the underlying mechanism for prim- 
ing. One factor that  has made this analysis difficult so 
far is our use of genctic programming, for which the 
space of genotypes is very large, (i.e., there are many 
redundant solutions)) and for which the neighborhood 
structure is less easily intuited than t,hat of a stan- 
dard genetic algorithm. Since there i s  every reason t,o 
believe that the underlying mechnnisni of iricreniental 
evolution is largely independent of t.he peculiarities 
of geuetic programming, we are currently investigat- 
ing the incremental evolut,ion mcchanisin using genetic 
algorithms with fixed-lengt,h genotypes. This should 
eiiable a better understanding of t,he mechanism. Ulti- 
mately, we will scale up this rcsearch effort to xialyze 
increineiital evolution with more t h;m one transition 
between test cases. This will irrvolvt. many opcri issues 
regarding t'le upt,iinization of  the, t,rnnsit,ion schedulc 
be tween test. cases. 

Fin a1 l y , t he u t  il  it y of in cr e I ne i i h l  (*volu ti on inus t, 
be assessed in additional domairis. I'lie t8cclinicluc 
stxms to he natrirally applicable in task domains (such 
as I)iirsiiit-t~v:zsioii a n d  'T rxke r )  whcre controllcrs are 
griicrntcv.f for agcrrts tha t  perforui t a s k s  in dorrinins 
wliosc "dilficulty" i s  easily ~,"'aiiit.t(:rizable (iiaing 
tioilinin-spccific knowlcdge). hlorc wcrk  is n e  

"We pcrfornird tlie following rxprrimcmt: Let. Fit( I ,  G) br 
tlir fitness value (>f a grnrtic proqram i acc;ording to t h r  evalii- 
ation fiincti<jn <;, arid N e s t _ O f ( P o p .  t .  G )  hr: t h e  rncmber 1' 
ol population P i i p  at. t ime t wit,h highest fitness according 
t o  c; ~ in other words, I' = R r s t - O J ( P o p , t .  G) inaxi:nizrs 
I . 'z t( l ,  G) O Y ~ I  d l  I E Pop. A populnt.ion P o p 0  was rvolvcd 
in thr usual manner using evaliiatiori fiinction G o  for t = 2.5 
generations. 1 Jowrvw, at, each gcnrration 1 5 i 5 25 w r  

nlso evaliiatrd the ~iirreii t  populntioii rising rvaluatioii function 
G I ,  and rrcordrd the value of ~ z t ( B e n t ~ O f ( P o p , z . ( . ~ i ) , G i ) .  
In  other words. wt' cvolvrd the poj~iilation rising G', as thc 
cvalnntion frinrtion. but at ? w r y  generation w c  also cornpiited 
the fitrirss the tJ?.it individual  in  the population according 
ti, (:I arid saved this \,slur. Using t h e  same random seed 
and control parametcis. we t h e n  evolvecl a population Pop1 
for t = :K) gcricrati<-rns rising G'1 as the evaluation function 
(IliJtf' Iliat. at gr:neratiori 0. P o p ,  i s  identical to P o p o ) .  For all  
values of t, wr ciimparcd Fzt(Bc.~t.Of(Pop~,t.~~1),G'~) w i t h  
F i f ( B f 3 t - O f ( l ' o p ,  , i ,  G I  ). GI). 

in order to better formalize and exploit this notion of 
domain difficulty. 

Refer e n c  e s 

[l] D. Andre. Evolution of mnpmaking: Learning, plan- 
ning and memory using genetic progranxning. Jn Proc. 
I E E E  I n t .  Conf. Evolutionary Computat ion,  pages 250- 
255, 1994. 

€I. Cobb arid J. Grefenstet,te. Genetic algorithmsfor track- 
ing changing environments. In I ' roc.  Fifth Internatioizal 
Conjerence o n  ( ; 'enetzc  Algorithms. pages 523-530. 1993. 

1. Harvey, P. fiusbands, and D. Cliff. Issues in evolutionary 
robotics,. In From .4nimals t o  An imal s  I": Proceedings 
of thr Second I n t c r n a t i o n a l  Conference  o n  Szmulat ion of 
A d a p t z u e  Hehniiior,  pages 36.1-374, 1992. 

I. Harvey, P. Husbands, and 11. Cliff. Seeing the light: Ar- 
tificial evolution, real vision. In From Animals  l o  Anz'mots 
9: Proceedzngs of the  Third Internat ional  Conferenct, on 
A d a p t z v e  Beiiavior, pages 392--401, 1994. 

.I. Holland. A d a p t a t z o n  in natural a n d  Ar t i f i cza l  i ' y s f r m s .  
University of Michigan Press, 1975. 

D. Jefferson, R. Collins, C. Cooper, kl. Dyer, M. F1owcr.s. 
R. Iiorf, C. Taylor, and A .  Wang. Evolution as a c.lieme i n  
artificial life: The genesys/tracker systrm. In C;. Langtnri. 
C. ' lhylor, .J. Farmer. and S. Nas~nusse~l, editors, Arfi f ic i i i l  
Life 11. pages 549--577. Addison-Wesley. 1992. 

.J. Koza. Geiirtic rvoliition and co-evolution of coinprit rr 
programs. In C .  Langton. C. Taylor, J .  I"armcr, and S. k i > -  
inussen, editors, A r f z f i r i e l  Life  If, pages iiO3-62!). Addison- 

J .  Koza. G c n r t i c  Programming: 0 7 1  t / i ~  Progrorr~rtizng 01 
('ompuiers By thr .\.lrans of ? i a t ~ ~ r a l  S, , i ict ion.  MI'[' i ' v s s .  
1992. 

\Veslcy, 1992. 

I ,  ?&tors. I'1'0m i ~ 1 i 2 7 1 1 i l ~ S  l o  
of f h r .  I'hzrJ l n t r ~ n ~ i i i o n ( ~ 1  ( ' o n f r r i ? ~  
201'. 199.4. 

C. I t q m o l d n .  Cuiripet.it ioii ,  m ~ ~ v o l u t i i ~ r i  nli<l t lie gam<' * > f  
tag.  In .4rfzjirzoi LiJ i  IC,  1994. 

187 


