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Abstract- 
Comparative studies of sets of control param- 

eter values are commonly performed when tun- 
ing an evolutionary algorithm for a class of prob 
lem instances. The standard approach is to iden- 
tify the most useful set of control parameter set- 
tings for a domain. In this paper, we propose 
an alternative anytime algorithm portfolio technique 
in which computational resources are allocated 
among multiple sets of control parameter value 
settings. We show a method of optimizing such 
portfolios by applying a bootstrap sampling ap- 
proach to a database of individual algorithm per- 
formance on instances from a problem distribu- 
tion. Experiments with a genetic algorithms a p  
plied to the traveling salesperson domain show 
that the portfolio approach can yield better per- 
formance on a distribution of problem instances 
than the standard approach of trying to iden- 
tify the single best configuration for the problem 
class. 

1 Introduction 

It is well known that control parameters such as popula- 
tion size and mutation rate have a significant impact on 
the performance of evolutionary algorithms. While re- 
cent theoretical work ([13]) has confirmed that it is not 
possible to find a set of control parameter values that is 
optimal in general for all problems to which an evolution- 
ary algorithm can be applied, it is possible (and often 
necessary) to tune control parameters so that accept- 
able performance is obtained for some particular class of 
problems. Thus, an implicit goal in much of the previous 
empirical work on evolutionary algorithms is t o  identify 
useful control parameter values for some given class of 
problems. 

A standard empirical methodology used in the field of 
evolutionary algorithms (as well as fields studying other 
heuristic search/optimization algorithms) is the follow- 
ing: for some problem class C, and evolutionary algo- 
rithm A, measure and report the performance of several 
parameterized instances of A on several instances of C. 
Common performance metrics used include the quality 

of the best solution found by the algorithm within a cer- 
tain time/resource limit, or the time/resource required 
by the algorithm to find a solution with a given thresh- 
old quality. Usually, the researcher computes and reports 
the mean and variance of the measurements. 

For example, a researcher proposing a new problem 
representation and/or genetic operator for the travel- 
ing salesperson problem (TSP) might proceed as follows: 
First, he implements an evolutionary algorithm which in- 
corporates his new representation and genetic operators. 
He then selects a set of benchmark TSP instances and 
runs his algorithms with these instances as input. Be- 
cause it is not known a priori which control parameter 
values are most useful, he would try a number of different 
sets of control parameter values in order to better under- 
stand the behavior of his algorithm and tune its perfor- 
mance. He might then compare his algorithm (using one 
or more sets of control parameter values) against previ- 
ous algorithms by selecting a new set of benchmark prob- 
lems and measuring the performance his algorithm on 
these test instances and comparing the results to those 
of other TSP-solver algorithms. If one or more parame- 
terized configurations of his new algorithm significantly 
outperform the standard benchmarks, he would conclude 
that he may have discovered a promising, new approach. 

An implicit assumption in the above methodology is 
that the goal of such an empirical study should be to 
evaluate the expected utility of individual candidate al- 
gorithms in comparison to  the expected utility of other 
candidate algorithms for a given class of problems. In 
many cases, this is a useful experimental paradigm, ad- 
vancing the state of algorithm research by yielding new 
“champion” algorithms with good average case perfor- 
mance for the problem class. 

However, there is an alternative to this standard ap- 
proach that has not been fully explored to  date. Namely, 
we need not restrict ourselves to  evaluating a single al- 
gorithm against other algorithms in order to determine 
which algorithm is the ‘‘best” algorithm for a given class 
of problem instances - instead, we can focus instead on 
the following problem: Given a problem instance from a 
class of problems and a set of candidate algorithms which 
can be applied to the problem class, how best can we al- 
locate computational resources among the algorithms in 
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order to maximize the expected utility of our problem- 
solving effort? 

This paper proposes the use of anytime algorithm 
portfolios, an approach for optimally allocating compu- 
tational resources among candidate algorithms in order 
t o  maximize the expected utility of a problem solving 
episode. Specifically, we focus on the application of any- 
time algorithm portfolios to  the control parameter value 
selection problem in evolutionary algorithms. 

,We begin by defining the framework of resource- 
bounded optimization, which is an appropriate model 
for many evolutionary algorithm applications which con- 
siders independent restarts of the evolutionary algo- 
rithm. We then define anytime algorithm portfolios in 
the resource-bounded optimization framework and d e  
scribe a simple algorithm for automatically synthesizing 
anytime algorithm portfolios. We evaluate the utility of 
this approach on the application of a standard genetic al- 
gorithm to the traveling salesperson problem. We show 
that portfolios which allocate computational resources 
among several independent GA runs which use differ- 
ent sets of control parameter settings can outperform a 
set of independent restarts of the best “tuned” control 
parameter set found using the traditional aproach. 

2 Anytime 
Portfolios for ResourceBounded Opti- 
mization 

2.1 Resource Bounded Optimization with 

The framework of resource-bounded optimization is de- 
fined as follows: Let A be an optimization algorithm, and 
d be a problem instance (an objective function). Let T 
be a resource usage limit for A. Inthis paper, we assume 
that T is measured in a number of discrete “steps”, or 
objective function evaluations - we assume that all ob- 
jective function evaluations take approximately the same 
amount of time. Let U ( A , d , T ) ,  the utility of the algo- 
rithm A on d given time T ,  be the utility of the best 
solution found by the algorithm within the time bound. 
The task of resource-bounded optimization is t o  max- 
imize U (i.e., obtain the best possible solution quality 
within a given time). 

We assume that it does not matter when the maxi- 
mal value of U is obtained within the time window [0, TI. 
This is a reasonable model of many real-world optimiza- 
tion scenarios, in which an optimization expert is given a 
deadline at which to present the best solution found. In 
this problem framework, the only thing that matters is 
the utility of the best solution found within the deadline. 
Metrics such as rate of improvement of the best-sefar 
solution, or convergence of the population are irrelevant 
with respect t o  how an algorithm’s performance is eval- 
uated. 

Rest arts 

If T is large enough, then it is possible to  start a 
run of A ,  terminate it after tk steps, start another inde- 
pendent run of A ,  and run for tk+l steps. This process 
can be repeated n times, where Cy!l ti = T .  We call 
each of these independent run a restart. A restart stmt- 
egy determines t l ,  ... t , ,  and can be either static or dy-  
namic. Static restart strategies determine t l ,  ... t ,  prior 
to running the algorithm. For example, a strategy which 
allocates resources equally among n restarts is a static 
strategy. Dynamic strategies, on the other hand, decide 
during runtime when a restart should take place. For 
example, we could repeat the following until the total 
number of steps taken is T :  run A until a convergence 
criterion is met, then restart. 

Earlier work [3] defined a static restart schedule as a 
set S = { t l ,  t2 ,  . . tn} ,  where Cy=l ti = T .  The execution 
model for the restart schedule for resourcebounded op- 
timization is the following: Given an algorithm A and 
problem instance d, A is executed with d as the input 
for ti steps, for each i ,1 5 i 5 n. The best solu- 
tion found among all of the restarts is stored and re- 
turned as the result of the restart schedule execution. It 
was shown in [3] that based on a performance database 
(see below), static restart schedules could be automati- 
cally synthesized which were competitive with dynamic 
restart schedules. The restart schedule S = { t , t , . . t }  
(i.e., restart the algorithm every t steps), where t is cho- 
sen through trial and error, is frequently used in practice. 

2.2 Anytime Algorithm Portfolios 

The standard restart strategies described above assumes 
that the same algorithm is executed in each restart, with 
a different random seed or initial condition. By general- 
izing the framework to  allow different algorithms to be 
executed in each restart, we have a framework for r e  
source allocation among multiple candidate algorithms. 

The intuition for applying multiple algorithms to  a 
single problem instance is that if a class of problems has 
some structural diversity among its instances, then ap- 
plying a diverse set of algorithms may be superior to 
relying on a single algorithm, particuarly when the re- 
source bound is large enough. As an example, consider 
the following scenario: Suppose we have two candiate 
algorithms A1 and A2, and suppose that we have a dis- 
tribution of problem instances D, where half of the in- 
stances belong to subclass D1 and the other half belong 
to subclass D2. Let U ( A , t , d )  denote the utility (ex- 
pected performance) of algorithm A executed for time t 
on problem instance d. Suppose that U(A1,  T, d)  = 1.0 
for d E D1, and U ( A l , T , d )  = 0.0 for d E D2. Also, let 
U(A2,T,d)  = 1.0 for d E D2 and U(A2 ,T ,d )  = 0.0 for 
d E D1 (i.e., AI performs well on instances from subclass 
D1 and poorly on instances from D2, while the opposite 
is true for A2.) Furthermore, assume that for both A1 
and A2, for all d E D, U ( A , T , d )  = U(A,2T,d)  (i.e., 
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running the algorithms twice as long does not improve 
performace since they reach the point of drastically de- 
creasing marginal return after time T ) .  Then, if the 
total resource bound available is 2T, and test problem 
instances are drawn uniformly from D ,  then the best ex- 
pected performance for any restart strategy using either 
A1 or A2 alone is 0.5. However, a strategy that divi- 
dies its time evenly between AI  and A2 has an expected 
performance of 1.0. This illustrates the potential gain 
due to  diversification in a meta-level resource allocation 
strategy. 

Let T be the resource bound for an instance 
of resource-bounded optimization. An anytime al- 
gorithm portfolio for this problem is a set P = 
{ ( A l , t l ) ,  (A2,t2),  ... ( A , , t , ) } ,  where E;=’=, ti = T ,  and 
A I ,  A2, ... A ,  are anytime algorithms that can be applied 
to the problem instance. For example, AI, . .A, can be 
sets of control parameter values for an evolutionary al- 
gorithm, where, e.g., A1 could be the parameter set 
(population = 100,MutatimRate = O.Ol), and A2 is 
the parameter set (population = 200, MutatimRate = 
0.05). 

Given a portfolio P = { ( A , ,  t l ) ,  ...( A,, t n ) }  and prob- 
lem instance d,  P is executed as follows: An independent 
run of Ai is executed with d as the input for ti steps, for 
each i, 1 5 i 5 n. The best solution found among all of 
the restarts is stored and returned as the result of the 
portfolio execution. The portfolio is defined as a set, 
rather than a sequence, since the order in which the el- 
ements are executed does not matter (we assume that 
the restarts are independent, and that information from 
previous restarts is not used in subsequent restarts). 

Let U ( A ,  d ,  t )  denote the random variable which d e  
termines the utility when algorithm A is executed for 
time 
t on problem instance d. Then U ( P , d , T ) ,  the utility 
of a portfolio, is also a random value related to  those of 
the individual elements of the portfolio by U ( P ,  d ,  T )  = 

the goal of anytime algorithm portfolio design is t o  find 
the portfolio with highest expected utility U ( P ,  d, T). 

The above definition of portfolio utility is still ambigu- 
ous, in that we have not yet defined how utility is mea- 
sured. A natural utility metric is the best-so-far objec- 
tive function value i.e., U ( P ,  d , T )  = BestScore(P,d,T),  
the score of the best solution found by the portfolio run- 
ning for time T on problem instance d. In addition, an- 
other natural metric t o  optimize is the variance of portfo- 
lio performance, Var(P ,  d ,  T ) ,  which represents the risk 
of the portfolio. All other things being equal, a portfo- 
lio with smaller Var(P ,  d ,  T )  (less risk) is preferable to  
a portfolio with large variance (greater risk), especially 
in mission-critical real-time applications. We adopt a 
standard method from economics of combining expected 
return and risk on an investment and define utility 

m ~ ( U ( A l , d , t l ) , U ( A 2 , d ,  t2), -.-U(&, d, tn))-  Thus, 

as U(P,  d, T )  = E[BestScore(P, d ,  T)] - RVar(P, d ,  T ) ,  
where R is a constant of risk aversion of the user. If 
we choose to  ignore portfolio variance, then R = 0, 
and portfolio utility is equal to the expected best-so- 
far score. Throughout the experiments in this paper, we 
used R = 0.1 in the utility computation. 

In the discussion above, we have assumed that util- 
ity is positive, and that the goal is utility maximization. 
For optimization problems where the objective is t o  min- 
imize an objective function (e.g., tour length in the trav- 
eling salesperson problem), we simply treat the objective 
function as a negative utility. 

2.3 A Bootstrap Method for Meta-Level Opti- 
mization of Anytime Algorithm Portfolios 

In order t o  maximize the expected value of U ,  
E [ U ( P , d , T ) ] ,  we propose an approach which uses al- 
gorithm performance data collected in previous appli- 
cations of the component algorithms of P t o  problems 
similar to d (i.e., problems drawn from the same class 
of problems) to  determine the portfolio P .  We assume 
that “similarity” has been defined elsewhere, and that 
classes of problems have been previously identified prior 
to application of the portfolio synthesis algorithm. 

When A is executed on an instance d ,  we output the 
quality of the best-so-far solution at every q iterations 
in a performance database entry, D B ( A ,  d, runID) = 
{ ( q ,  u l ) ,  (2q, 2121, (3q, 2131, ... (mq, um)}, where runID is 
a tag which uniquely identifies the run (e.g., the ran- 
dom seed). By collecting a set of such entries, we 
collect a performance database which can serve as 
an empirical approximation of the distributions cor- 
responding to  the set of random variables U A ~  = 
{ U ( A , d , q ) , U ( A ,  d ,  2q), ... U ( A , d , m q ) } .  Data from runs 
on different problem instances (i.e., a set of sample prob- 
lem instances which serves to  approximate the under- 
lying distribution of problem instances in the problem 
class) can be combined in order t o  generate approxima- 
tions for U ( A ,  t ) .  

Figure 1 shows a sample performance database based 
on a set of 3 independent runs of algorithm AI and A2 
on problem instances il and i2. From the database, we 
can compute, for example, that an approximation for the 
expected value of U ( A l , i l , 3 0 )  is (3 + 2 + 2) /3  = 2.33, 

The performance database provides the infrastructure 
necessary to automatically synthesize a static restart 
strategy that maximizes the expected utility U ( A ,  T ) ,  
using a statistical bootstrap approach. 

Synthesize-Portfolio (Figure 2 )  is a simple generate- 
and-test approach for finding good algorithm portfolios. 
Given a portfolio allocation unit size parameter I C ,  where 
T mod k = 0, synthesize-portfolio searches the set of 
portfolios where each restart has a length which is an 
integral multiple of k. The size of this meta-level search 

and U(A2,20) = ( 2  + 1 + 1 + 2 + 3 + 3) /6  = 2.0. 
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space explored by synthesize-portfolio grows exponen- 
tially as a function of Tlk 

GenemteNextPortfolio is a heuristic for generating 
candidate portfolios, and we currently use one of two 
simple algorithms: If it is feasible, we exhaustively enu- 
merate the set of all portfolios with restart lengths which 
are multiples of k. For example, if A0 and AI are the 
component algorithms and if T = 5000, k = 2500 (i.e., 
total resource allocation is 5000 objective function eval- 
uations, and the algorithms can be restarted at multi- 
ples of 2500 iterations), the portfolios which are gener- 
ated and evaluated are PO = {(A0,250O),(A0,2500)}, 

P3 = {(AI, 5000)). This exhaustive search algorithm 
is most useful when optimizing portfolios restricted to 
using a single algorithm, i.e., standard restart strate- 
gies. However, for portfolios with multiple algorithms, 
exhaustive search quickly becomes intractable. Thus, if 
it is not feasible to enumerate the entire set of portfo- 
lios, GenerateNextPortfolio generates random portfolios 
where the algorithm and the length of the restart is se- 
lected using uniform sampling. 

Each candidate portfolio is evaluated by estimating 
its expected utility via sampling (with replacement) from 
the performance database, i.e., we generate a bootstrap 
sampling distribution [2] and compute its mean and vari- 
ance. The utility metric used is described in the section 
above (Section 2.2). It is important to note that evalu- 
ating a candidate portfolio with this bootstrap method 
is typically orders of magnitude less expensive than ac- 
tually executing the portfolio (especially when the per- 
formance database is in memory). Thus, the meta-level 
search is able to evaluate thousands of candidate portfo- 
lio per second on a workstation, and its cost is negligible 
compared with the time required to generate the perfor- 
mance database. 

Pi = {(Ao,5000)}, Pz = {(Ao,25OO),(A1,2500)}, and 

jynthesize-portfolio(Per f D B,NumSamples,T,k) 
IestPortfolio = {} 
IestUtility = -CO 

%epeat 
P=GenerateNextPortfolio(T,k) 
/* estimate expected utility of P using bootstrap sampling */ 
SumUtility = -CO 

for i = 1 to NumSamples 
TrialUtility = -CO 

for each element ( A j  , t j )  in P 
D BInst = ChooseRandomDBProbIndex 
D BSeed = ChooseRandomDBSeedIndex 
Uj = DBLookUp(Per f DB,Aj  ,DBInst ,  DBSeed,tj) 
if Uj > TrialUtility 

TrialUtility = Uj 
end 
sumutility = sumUtility + TrialUtility 

end 

U s  = sumlJtility/NumSamples 
if U s  > bestUtility 

bestportfolio = S 
bestutility = Us 

Jntil some termination condition 
%eturn bestPortf olio 

Figure 2: Synthesize-portfolio: Returns a portfolio with 
highest expected utility. 

3 Experiments and Results 

We evaluated the anytime algorithm approach using a 
class of symmetric Traveling Salesperson Problem (TSP) 
instances. 

3.1 Traveling salesperson domain and genetic al- 
gorithm 

The TSP instances were generated by placing N = 40 
cities on randomly selected (z,y) coordinates (where z 
and y are floating point values between 0 and 1) on a 
1.0 by 1.0 rectangle. The cost of traveling between two 
cities ci and cj is the Euclidean distance between them, 

The objective is t o  find a tour n (a permu- 
tation of the cities) with minimal cost, Cost,  = 

The problem representation used was a Gray-coded 
binary genome which was interpreted as follows: The i th  
allele (substring) was an integer between 1 and N ,  repre  
senting the ordering in the TSP tour for city i.  Ties were 
broken in left t o  right order. For example, the genome 
(3,2,1,5,3) for a 4-city TSP problem means that City1 is 
visited third, City2 second, City3 first, City4 fifth, City5 
is fourth, and the tour completes by returning to  City3. 
Although this is not a particularly good encoding of the 
TSP for a genetic algorithm (GA) (see, e.g. [lo, 57 for 
encodings developed specifically to  perform well on the 
TSP). However, our goal was t o  evaluate restart strate- 
gies (as opposed to finding good solutions for the TSP), 

d(ci, cj ) 

CY:: d(cr(i),c=(i+l)) + d(~x(n),cx(I)) 
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and we used the TSP as a testbed because it is a well- 
known, convenient class of problems for which problem 
instances can be easily generated, encoded, and rapidly 
evaluated. 

A steady-state genetic algorithm with uniform 
crossover [ll] was used. The mutation opera- 
tor was the standard bit flip operator. A rank- 
based selection method was used [12], where the 
individual selected had the rank: SelRank = 

i.e., the higher the bias, the more the likely it is 
that high ranked individuals are selected.' Likewise, 
when deleting individuals from the population, the index 
of the individual selected for deletion is (Population - 
SelRank) (the higher the bias, the less likely it is that 
high ranked individuals are deleted). 

(Bias-dBiaaZ -4.0( Bias-1) x R A N D )  
Population 2.0/(Bias- l )  

3.2 Performance Database Generation 

We generated a performance database as follows: 
Ten random 40-city TSP instances were generated as 

described above. 
54 different configurations of the GA were generated, 

by selecting values for four control parameters (popu- 
lation size, crossover probability, mutation probability, 
selection bias) , where: 

Population E {10,100,250}, 

Bias E { l . O ,  1.5,2.0}, the selection bias, 

Pr(Crossover) E {0.0,0.25,0.5}, the probability of 
uniform crossover , and 

Pr(Mutate) E {0.01,0.05}, the probability of each 
bit being flipped. 

For each of the TSP instances, we executed each of 
the GA configurations using 30 different random seeds. 
Each run was for 20000 iterations (objective function 
evaluations), i.e., the number of generations was chosen 
so that the poplation x NumGenerations = 20000. Ev- 
ery 1000 iterations, the length of the shortest tour found 
so far  by the current GA configuration for the current 
TSP instance for the current random seed was stored in 
the performance database. 

For each TSP instance, we found the lma, and lmin, 
the longest and shortest tour lengths found (by all GA 
configurations and random seeds), and normalized all 
of the performance database entries by rescaling each 
value to a range between [0,1], according to the formula 
Orescaled = (Voriginal - L i n > / ( l m a z  - lmin). 

' R A N D  is a function that returns a random floating point num- 
ber between 0 and 1. 

3.3 Anytime Algorithm Portfolios vs. Individual 
Algorithms 

We compared the performance of the anytime algorithm 
portfolio approach versus the performance of the stan- 
dard singlealgorithm approach. 

First, using the performance database gener- 
ated above, we used Using synthesize-portfolio where 
T=30000, k=1000, NumSamples = 100, we opti- 
mized a portfolio for our distribution of 40-city TSP 
instances. We call this the BestPortfolio. In 
this experiment, we found that BestPortfolio = 
{ ( A I ,  l O O O O ) ,  (A2,3000), (A3, l O O O O ) ,  (Ad, 7000)}, where: 

AI is the configuration with Population=lO, 
PT( CTOSSWeT)=0.25,PT( hfUtate)=O.Ol, 
Bias=2.0, 

A2 is the configuration with Population=100, 
PT(CTOSsoveT)=O.O,PT(Mz l ta te )=o .o5 ,  Bias=1.5, 

A3 is the configuration with Population=lO, 
P T ( C T O S S o v e T ) = 0 . 2 5 , P T ( h f ~ ~ a t e ) = o . o l ,  
Bias=P.O, and 

A4 is the configuration with Population=100, 
P T ( ~ T O s s o v e T ) = 0 . 5 , ~ T ( h f ~ t a t e ) = ~ . ~ ~ ,  Bias=1.5. 

Then, for each of the 54 GA configurations 
from which the performance database was gener- 
ated, we optimized a single-algorithm restart strat- 
egy BestSingleAlgRestarti ( 1  5 i 5 54). We 
executed synthesize-portfolio with T=30000, k=1000, 
NumSamples = 100, but for each run, we restricted 
the domain of algorithms to Ai, where Ai was the i th  
GA configuration. That is, BestSingleAlgRestarti is 
the best static restart strategy for GA configuration i 
for our distribution of 40-city TSP instances. We then 
selected the single algorithm restart strategy with the 
best expected performance, BestSingleAlgRestart. 

Note that BestSingleAlgRestart is the configu- 
ration which would be selected as "the most use- 
ful single configuration" of the GA in a traditional 
parameter tuning approach, i.e., it is the set of 
control parameter settings which, on average, per- 
forms best on our problem distribution. In this ex- 
periment, we found that BestSingleAlgRestart = 
{ ( A ,  l O O O O ) ,  (A,  SOOO), (A, 3000), (A, 9000)}, where A 
is the GA configuration with parameter values: 

0.01, Bias = 2.0 
Ten new random 40-city TSP instances were gener- 

ated using the same problem generator used to gen- 
erate the problems used for creating the performance 
database. These test problems were labeled 40-cities-1, 
.. 40-cities-IO. 

For each test problem, we applied both the 
BestPort f olio and BestSingleAlgRestart single a l g e  
rithm restart strategies for'T = 30000. The mean score 

PqpzllatiVTl 10, PT(CTOSS#VeT) = 0.5, PT(kfUtate) = 
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Problem I BestPort f olio 
40cities-1 1 0.102 (0.041) 
40cities-2 
40cities-3 
40cities-4 
40cities-5 
40cities-6 
40cities-7 
40cities-8 
40cities-9 

40cities- 10 

0.074 (0.042) 

0.072 (0.021) 
0.089 (0.027) 
0.095 (0.038) 
0.109 (0.024) 
0.082 (0.015) 
0.097 (0.032) 
0.124 (0.036) 

0.111 (0.019) 

BestSingleAlgRestart 
0.124 (0.045) 
0.071 (0.050) 
0.131 (0.029) 
0.094 (0.018) 
0.127 (0.024) 
0.093 (0.030) 
0.111 (0.034) 
0.099 (0.032) 
0.113 (0.036) 
0.110 (0.022) 

Table 1: Summary of results: mean and standard devia- 
tion of the best scores (normalized tour length) found by 
the BestPort f olio and BestSingleAlgRestart strate- 
gies on ten 40-city TSP instances. 

(length of shortest tour found in run) and variance of 25 
independent runs were recorded. 

The results are summarized in Table 1. For each prob- 
lem, we show the mean best objective function score and 
standard deviation (of 30 runs) of the BestPortfolio 
score, as well as the mean and variance (or 30 runs) of 
the BestSingleAlgRestart strategy. 

For six out of the ten test TSP 
instances, BestPwt f olio significantly outperformed 
BestSingleAlgRestart. For three instances (4Ocities- 
2, 4Ucities-6, 40cities-7), the results are comparable. 
In one instance (40cities-10), BestSingleAlgRestart 
clearly outpermed BestPort f olio. Thus, on aver- 
age, BestPort f olio performed significantly better than 
BestSingleAlgRestart. 

4 Related Work 

Algorithm portfolios are based on the theory of in- 
vestment portfolios developed in the field of economics. 
Portfolio theory was developed to answer the question: 
“How should one allocate his/her financial assets (stocks, 
bonds, etc) in order to maximize expected returns while 
minimizing returns?” The anytime algorithm portfolio 
framework is quite similar t o  the singleperiod portfolio 
model developed by Markowitz [8]. A significant dif- 
ference between anytime algorithm portolios and invest- 
ment portfolios is that the expected utility of an anytime 
algorithm portfolios is the expected value of the best s e  
lution computed by the portfolio (i.e., a MAX opera- 
tion), while the expected rate of return of an investment 
portfolio is a weighted average of the expected returns 
of its component investments. As a consequence, com- 
puting the optimal anytime algorithm portfolio is not 
as straightforward as computing an optimal investment 
portfolio. 

Huberman, Lukose and H o g  [7] recently proposed 
the use of “computational portfolios” composed of mul- 
tiple algorithms to  solve combinatorial search problems 

and other hard computational problems. They showed 
how two or more Las Vegas algorithms2 executed con- 
currently can result in an algorithm portfolio whose ex- 
pected time and variance to  find a solution to an NP- 
complete problem (graph coloring) is significantly better 
than its component algorithms. Gomes and Selman [4] 
applied a portfolio Las Vegas algorithms to the quasi- 
group completion problem. 

Here, we have extended the algorithm portfolio ap- 
proach to resourcebounded optimization, combining in- 
stances of evolutionary algorithms into algorithm port- 
folios for optimization. Unlike the Las Vegas algorithms 
studied in previous work on algorithm portfolios, opti- 
mization algorithms such as evolutionary algorithms are 
anytame algorithms [14] that can be interrupted at any 
time to  return a solution with some ~ t i l i t y . ~  As a result 
of this, a significant difference between our work and this 
previous work in algorithm portfolios is that in the previ- 
ous work, the goal is to minimize expected time to find 
a solution of acceptable quality (there is no deadline), 
while our framework has a resource bound. 

The decision-theoretic framework we adopted in our 
study of algorithm portfolios is related to work on 
decision-theoretic reasoning and meta-level reasoning in 
artificial intelligence. Much of the previous work in the 
area has focused on meta-level control of the tradeoff 
between computation and action (c.f., [6, l]), as well 
as lower-level resource allocation problems (e.g., which 
nodes to  explore in a search tree) (c.f. [9]). Zilberstein 
and Russell [15] studied the composition of systems of 
anytime algorithms, where each component is an any- 
time algorithm whose output is the input t o  the next 
anytime algorithm in the system (e.g., a robot naviga- 
tion system system composed of an anytime sensing al- 
gorithm and an anytime navigation algorithm). 

5 Discussion/Future Work 

This paper proposed anytime algorithm portfolios as a 
method for allocating limited computational resources 
among sets of candidate control parameter values for 
evolutionary algorithms. Using the TSP problem d e  
main, we showed that the anytime algorithm portfolio 
approach yields a resource allocation among multiple 
several control parameter value sets which can be su- 
perior to that of the traditional single configuration r e  
source allocation model. 

It is important to note that applying the algo- 
rithm portfolio technique requires no more data 
than what is already collected in the course of 
a standard parameter tuning experiment. What 

‘Algorithms which always produce the correct solution to a 
problem, but with a distribution of solution times 

31t is possible to view Las Vegas algorithms as a special case 
of an anytime algorithm where the utility of all partial solutions 
have the identical, worst utility score. 
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we propose is simply an alternative way to exploit 
the data that is collected in a standard parame- 
ter tuning experiment. In addition, the application of 
the technique to a new domain is a completely domain- 
independent process. 

An interesting consequence of being able to synthe- 
size algorithm portfolios is that in some domains, it may 
be worthwhile to focus some research on algorithms that 
have poor expected performance on most instances of a 
problem class but excel on some rare instances where 
the “better” algorithms exhibit pathological/poor per- 
formance. Although such algorithms would likely be dis- 
carded/ignored because of poor average performance in 
the standard methodology of comparative empirical al- 
gorithm research, the portofolio framework provides a 
rational approach to allocating some computational re- 
sources to  these “outlier-specific” algorithms. 

Although in this paper, we applied portfolios in a con- 
text where each of the component “algorithms” was a 
different parameterization of the same basic GA, portfo- 
lios can also be straightforwardly applied when the set 
of algorithms encompasses a much lager domain of al- 
gorithms. In future work, we will investigate combina- 
tions of evolutionary algorithms with significantly dif- 
ferent algorithms (e.g., systematic heuristic search and 
simulated annealing). Furthermore, it should be noted 
that algorithm portfolios could be applied in conjunction 
with “self-adaptive” algorithms which automatically ad- 
just their control parameters within a single run, since 
even these adaptive algorithms have meta-level parame- 
ters or initial values for parameters, and using portfolios 
to  allocate resources between multiple sets of these meta- 
level parameters may be worthwhile. 

The resource-bounded optimization model discussed 
in this paper is only one model t o  which anytime algo- 
rithm portfolios can be applied. Other interesting mod- 
els which we will investigate include: 

0 Fixed resource cost - a model where the resource 
bound is not set a priori but each unit of resource 
usage has a cost, and the utility function for the 
portfolio must consider minimization of resource us- 
age. This is the model adopted in [7,4] in their work 
with portfolios of decision algorithms. 

0 Stochastic deadline model - a model where the re- 
source bound is not known a priori; the system 
must maximize utility some distribution of dead- 
lines. This model is particularly interesting because 
of the opportunity to exploit the risk-reduction po- 
tential of algorithm portfolios. 

One major limitation of the current portfolio frame- 
work is the assumption that we restrict ourselves to 
restart strategies in which each restart is independent. 
While this is an accurate model for many circumstances, 
a significant extension to  the model would address the 

issue of non-independent restarts, e.g., evolutionary al- 
gorithm variants that can be “seeded” by the best in- 
dividuals from previous restarts. Conditional perfor- 
mance profiles, proposed by Zilberstein and Russell [15] 
for modeling sequences of anytime algorithms whose out- 
put quality is dependent on the input, may be useful for 
this purpose. 
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