
Genetic Algorithm Portfolios

Alex S. hkunaga
Computer Science Department

University of California, Los Angeles
fukunaga@cs. ucla.edu

Abstract-
Comparative studies of sets of control param-

eter values are commonly performed when tun-
ing an evolutionary algorithm for a class of prob
lem instances. The standard approach is to iden-
tify the most useful set of control parameter set-
tings for a domain. In this paper, we propose
an alternative anytime algorithm portfolio technique
in which computational resources are allocated
among multiple sets of control parameter value
settings. We show a method of optimizing such
portfolios by applying a bootstrap sampling ap-
proach to a database of individual algorithm per-
formance on instances from a problem distribu-
tion. Experiments with a genetic algorithms a p
plied to the traveling salesperson domain show
that the portfolio approach can yield better per-
formance on a distribution of problem instances
than the standard approach of trying to iden-
tify the single best configuration for the problem
class.

1 Introduction

It is well known that control parameters such as popula-
tion size and mutation rate have a significant impact on
the performance of evolutionary algorithms. While re-
cent theoretical work ([13]) has confirmed that it is not
possible to find a set of control parameter values that is
optimal in general for all problems to which an evolution-
ary algorithm can be applied, it is possible (and often
necessary) to tune control parameters so that accept-
able performance is obtained for some particular class of
problems. Thus, an implicit goal in much of the previous
empirical work on evolutionary algorithms is t o identify
useful control parameter values for some given class of
problems.

A standard empirical methodology used in the field of
evolutionary algorithms (as well as fields studying other
heuristic search/optimization algorithms) is the follow-
ing: for some problem class C, and evolutionary algo-
rithm A, measure and report the performance of several
parameterized instances of A on several instances of C.
Common performance metrics used include the quality

of the best solution found by the algorithm within a cer-
tain time/resource limit, or the time/resource required
by the algorithm to find a solution with a given thresh-
old quality. Usually, the researcher computes and reports
the mean and variance of the measurements.

For example, a researcher proposing a new problem
representation and/or genetic operator for the travel-
ing salesperson problem (TSP) might proceed as follows:
First, he implements an evolutionary algorithm which in-
corporates his new representation and genetic operators.
He then selects a set of benchmark TSP instances and
runs his algorithms with these instances as input. Be-
cause it is not known a priori which control parameter
values are most useful, he would try a number of different
sets of control parameter values in order to better under-
stand the behavior of his algorithm and tune its perfor-
mance. He might then compare his algorithm (using one
or more sets of control parameter values) against previ-
ous algorithms by selecting a new set of benchmark prob-
lems and measuring the performance his algorithm on
these test instances and comparing the results to those
of other TSP-solver algorithms. If one or more parame-
terized configurations of his new algorithm significantly
outperform the standard benchmarks, he would conclude
that he may have discovered a promising, new approach.

An implicit assumption in the above methodology is
that the goal of such an empirical study should be to
evaluate the expected utility of individual candidate al-
gorithms in comparison to the expected utility of other
candidate algorithms for a given class of problems. In
many cases, this is a useful experimental paradigm, ad-
vancing the state of algorithm research by yielding new
“champion” algorithms with good average case perfor-
mance for the problem class.

However, there is an alternative to this standard ap-
proach that has not been fully explored to date. Namely,
we need not restrict ourselves to evaluating a single al-
gorithm against other algorithms in order to determine
which algorithm is the ‘‘best” algorithm for a given class
of problem instances - instead, we can focus instead on
the following problem: Given a problem instance from a
class of problems and a set of candidate algorithms which
can be applied to the problem class, how best can we al-
locate computational resources among the algorithms in

0-7803-6375-2/00/$10.00 02000 IEEE. 1304

http://ucla.edu

order to maximize the expected utility of our problem-
solving effort?

This paper proposes the use of anytime algorithm
portfolios, an approach for optimally allocating compu-
tational resources among candidate algorithms in order
t o maximize the expected utility of a problem solving
episode. Specifically, we focus on the application of any-
time algorithm portfolios to the control parameter value
selection problem in evolutionary algorithms.

,We begin by defining the framework of resource-
bounded optimization, which is an appropriate model
for many evolutionary algorithm applications which con-
siders independent restarts of the evolutionary algo-
rithm. We then define anytime algorithm portfolios in
the resource-bounded optimization framework and d e
scribe a simple algorithm for automatically synthesizing
anytime algorithm portfolios. We evaluate the utility of
this approach on the application of a standard genetic al-
gorithm to the traveling salesperson problem. We show
that portfolios which allocate computational resources
among several independent GA runs which use differ-
ent sets of control parameter settings can outperform a
set of independent restarts of the best “tuned” control
parameter set found using the traditional aproach.

2 Anytime
Portfolios for ResourceBounded Opti-
mization

2.1 Resource Bounded Optimization with

The framework of resource-bounded optimization is de-
fined as follows: Let A be an optimization algorithm, and
d be a problem instance (an objective function). Let T
be a resource usage limit for A. Inthis paper, we assume
that T is measured in a number of discrete “steps”, or
objective function evaluations - we assume that all ob-
jective function evaluations take approximately the same
amount of time. Let U (A , d , T) , the utility of the algo-
rithm A on d given time T , be the utility of the best
solution found by the algorithm within the time bound.
The task of resource-bounded optimization is t o max-
imize U (i.e., obtain the best possible solution quality
within a given time).

We assume that it does not matter when the maxi-
mal value of U is obtained within the time window [0, TI.
This is a reasonable model of many real-world optimiza-
tion scenarios, in which an optimization expert is given a
deadline at which to present the best solution found. In
this problem framework, the only thing that matters is
the utility of the best solution found within the deadline.
Metrics such as rate of improvement of the best-sefar
solution, or convergence of the population are irrelevant
with respect t o how an algorithm’s performance is eval-
uated.

Rest arts

If T is large enough, then it is possible to start a
run of A , terminate it after tk steps, start another inde-
pendent run of A , and run for tk+l steps. This process
can be repeated n times, where Cy!l ti = T . We call
each of these independent run a restart. A restart stmt-
egy determines t l , ... t , , and can be either static or dy-
namic. Static restart strategies determine t l , ... t , prior
to running the algorithm. For example, a strategy which
allocates resources equally among n restarts is a static
strategy. Dynamic strategies, on the other hand, decide
during runtime when a restart should take place. For
example, we could repeat the following until the total
number of steps taken is T : run A until a convergence
criterion is met, then restart.

Earlier work [3] defined a static restart schedule as a
set S = { t l , t2 , . . tn} , where Cy=l ti = T . The execution
model for the restart schedule for resourcebounded op-
timization is the following: Given an algorithm A and
problem instance d, A is executed with d as the input
for ti steps, for each i ,1 5 i 5 n. The best solu-
tion found among all of the restarts is stored and re-
turned as the result of the restart schedule execution. It
was shown in [3] that based on a performance database
(see below), static restart schedules could be automati-
cally synthesized which were competitive with dynamic
restart schedules. The restart schedule S = { t , t , . . t }
(i.e., restart the algorithm every t steps), where t is cho-
sen through trial and error, is frequently used in practice.

2.2 Anytime Algorithm Portfolios

The standard restart strategies described above assumes
that the same algorithm is executed in each restart, with
a different random seed or initial condition. By general-
izing the framework to allow different algorithms to be
executed in each restart, we have a framework for r e
source allocation among multiple candidate algorithms.

The intuition for applying multiple algorithms to a
single problem instance is that if a class of problems has
some structural diversity among its instances, then ap-
plying a diverse set of algorithms may be superior to
relying on a single algorithm, particuarly when the re-
source bound is large enough. As an example, consider
the following scenario: Suppose we have two candiate
algorithms A1 and A2, and suppose that we have a dis-
tribution of problem instances D, where half of the in-
stances belong to subclass D1 and the other half belong
to subclass D2. Let U (A , t , d) denote the utility (ex-
pected performance) of algorithm A executed for time t
on problem instance d. Suppose that U(A1, T, d) = 1.0
for d E D1, and U (A l , T , d) = 0.0 for d E D2. Also, let
U(A2,T,d) = 1.0 for d E D2 and U(A2 ,T ,d) = 0.0 for
d E D1 (i.e., AI performs well on instances from subclass
D1 and poorly on instances from D2, while the opposite
is true for A2.) Furthermore, assume that for both A1
and A2, for all d E D, U (A , T , d) = U(A,2T,d) (i.e.,

1305

running the algorithms twice as long does not improve
performace since they reach the point of drastically de-
creasing marginal return after time T) . Then, if the
total resource bound available is 2T, and test problem
instances are drawn uniformly from D , then the best ex-
pected performance for any restart strategy using either
A1 or A2 alone is 0.5. However, a strategy that divi-
dies its time evenly between AI and A2 has an expected
performance of 1.0. This illustrates the potential gain
due to diversification in a meta-level resource allocation
strategy.

Let T be the resource bound for an instance
of resource-bounded optimization. An anytime al-
gorithm portfolio for this problem is a set P =
{ (A l , t l) , (A2,t2), ... (A , , t ,) } , where E;=’=, ti = T , and
A I , A2, ... A , are anytime algorithms that can be applied
to the problem instance. For example, AI, . .A, can be
sets of control parameter values for an evolutionary al-
gorithm, where, e.g., A1 could be the parameter set
(population = 100,MutatimRate = O.Ol), and A2 is
the parameter set (population = 200, MutatimRate =
0.05).

Given a portfolio P = { (A , , t l) , ...(A,, t n) } and prob-
lem instance d, P is executed as follows: An independent
run of Ai is executed with d as the input for ti steps, for
each i, 1 5 i 5 n. The best solution found among all of
the restarts is stored and returned as the result of the
portfolio execution. The portfolio is defined as a set,
rather than a sequence, since the order in which the el-
ements are executed does not matter (we assume that
the restarts are independent, and that information from
previous restarts is not used in subsequent restarts).

Let U (A , d , t) denote the random variable which d e
termines the utility when algorithm A is executed for
time
t on problem instance d. Then U (P , d , T) , the utility
of a portfolio, is also a random value related to those of
the individual elements of the portfolio by U (P , d , T) =

the goal of anytime algorithm portfolio design is t o find
the portfolio with highest expected utility U (P , d, T).

The above definition of portfolio utility is still ambigu-
ous, in that we have not yet defined how utility is mea-
sured. A natural utility metric is the best-so-far objec-
tive function value i.e., U (P , d , T) = BestScore(P,d,T),
the score of the best solution found by the portfolio run-
ning for time T on problem instance d. In addition, an-
other natural metric t o optimize is the variance of portfo-
lio performance, Var(P , d , T) , which represents the risk
of the portfolio. All other things being equal, a portfo-
lio with smaller Var(P , d , T) (less risk) is preferable to
a portfolio with large variance (greater risk), especially
in mission-critical real-time applications. We adopt a
standard method from economics of combining expected
return and risk on an investment and define utility

m ~ (U (A l , d , t l) , U (A 2 , d , t2), -.-U(&, d, tn))- Thus,

as U(P, d, T) = E[BestScore(P, d , T)] - RVar(P, d , T) ,
where R is a constant of risk aversion of the user. If
we choose to ignore portfolio variance, then R = 0,
and portfolio utility is equal to the expected best-so-
far score. Throughout the experiments in this paper, we
used R = 0.1 in the utility computation.

In the discussion above, we have assumed that util-
ity is positive, and that the goal is utility maximization.
For optimization problems where the objective is t o min-
imize an objective function (e.g., tour length in the trav-
eling salesperson problem), we simply treat the objective
function as a negative utility.

2.3 A Bootstrap Method for Meta-Level Opti-
mization of Anytime Algorithm Portfolios

In order t o maximize the expected value of U ,
E [U (P , d , T)] , we propose an approach which uses al-
gorithm performance data collected in previous appli-
cations of the component algorithms of P t o problems
similar to d (i.e., problems drawn from the same class
of problems) to determine the portfolio P . We assume
that “similarity” has been defined elsewhere, and that
classes of problems have been previously identified prior
to application of the portfolio synthesis algorithm.

When A is executed on an instance d , we output the
quality of the best-so-far solution at every q iterations
in a performance database entry, D B (A , d, runID) =
{ (q , u l) , (2q, 2121, (3q, 2131, ... (mq, um)}, where runID is
a tag which uniquely identifies the run (e.g., the ran-
dom seed). By collecting a set of such entries, we
collect a performance database which can serve as
an empirical approximation of the distributions cor-
responding to the set of random variables U A ~ =
{ U (A , d , q) , U (A , d , 2q), ... U (A , d , m q) } . Data from runs
on different problem instances (i.e., a set of sample prob-
lem instances which serves to approximate the under-
lying distribution of problem instances in the problem
class) can be combined in order t o generate approxima-
tions for U (A , t) .

Figure 1 shows a sample performance database based
on a set of 3 independent runs of algorithm AI and A2
on problem instances il and i2. From the database, we
can compute, for example, that an approximation for the
expected value of U (A l , i l , 3 0) is (3 + 2 + 2) /3 = 2.33,

The performance database provides the infrastructure
necessary to automatically synthesize a static restart
strategy that maximizes the expected utility U (A , T) ,
using a statistical bootstrap approach.

Synthesize-Portfolio (Figure 2) is a simple generate-
and-test approach for finding good algorithm portfolios.
Given a portfolio allocation unit size parameter I C , where
T mod k = 0, synthesize-portfolio searches the set of
portfolios where each restart has a length which is an
integral multiple of k. The size of this meta-level search

and U(A2,20) = (2 + 1 + 1 + 2 + 3 + 3) /6 = 2.0.

1306

space explored by synthesize-portfolio grows exponen-
tially as a function of Tlk

GenemteNextPortfolio is a heuristic for generating
candidate portfolios, and we currently use one of two
simple algorithms: If it is feasible, we exhaustively enu-
merate the set of all portfolios with restart lengths which
are multiples of k. For example, if A0 and AI are the
component algorithms and if T = 5000, k = 2500 (i.e.,
total resource allocation is 5000 objective function eval-
uations, and the algorithms can be restarted at multi-
ples of 2500 iterations), the portfolios which are gener-
ated and evaluated are PO = {(A0,250O),(A0,2500)},

P3 = {(AI, 5000)). This exhaustive search algorithm
is most useful when optimizing portfolios restricted to
using a single algorithm, i.e., standard restart strate-
gies. However, for portfolios with multiple algorithms,
exhaustive search quickly becomes intractable. Thus, if
it is not feasible to enumerate the entire set of portfo-
lios, GenerateNextPortfolio generates random portfolios
where the algorithm and the length of the restart is se-
lected using uniform sampling.

Each candidate portfolio is evaluated by estimating
its expected utility via sampling (with replacement) from
the performance database, i.e., we generate a bootstrap
sampling distribution [2] and compute its mean and vari-
ance. The utility metric used is described in the section
above (Section 2.2). It is important to note that evalu-
ating a candidate portfolio with this bootstrap method
is typically orders of magnitude less expensive than ac-
tually executing the portfolio (especially when the per-
formance database is in memory). Thus, the meta-level
search is able to evaluate thousands of candidate portfo-
lio per second on a workstation, and its cost is negligible
compared with the time required to generate the perfor-
mance database.

Pi = {(Ao,5000)}, Pz = {(Ao,25OO),(A1,2500)}, and

jynthesize-portfolio(Per f D B,NumSamples,T,k)
IestPortfolio = {}
IestUtility = -CO

%epeat
P=GenerateNextPortfolio(T,k)
/* estimate expected utility of P using bootstrap sampling */
SumUtility = -CO

for i = 1 to NumSamples
TrialUtility = -CO

for each element (A j , t j) in P
D BInst = ChooseRandomDBProbIndex
D BSeed = ChooseRandomDBSeedIndex
Uj = DBLookUp(Per f DB,Aj ,DBInst , DBSeed,tj)
if Uj > TrialUtility

TrialUtility = Uj
end
sumutility = sumUtility + TrialUtility

end

U s = sumlJtility/NumSamples
if U s > bestUtility

bestportfolio = S
bestutility = Us

Jntil some termination condition
%eturn bestPortf olio

Figure 2: Synthesize-portfolio: Returns a portfolio with
highest expected utility.

3 Experiments and Results

We evaluated the anytime algorithm approach using a
class of symmetric Traveling Salesperson Problem (TSP)
instances.

3.1 Traveling salesperson domain and genetic al-
gorithm

The TSP instances were generated by placing N = 40
cities on randomly selected (z,y) coordinates (where z
and y are floating point values between 0 and 1) on a
1.0 by 1.0 rectangle. The cost of traveling between two
cities ci and cj is the Euclidean distance between them,

The objective is t o find a tour n (a permu-
tation of the cities) with minimal cost, Cost, =

The problem representation used was a Gray-coded
binary genome which was interpreted as follows: The i th
allele (substring) was an integer between 1 and N , repre
senting the ordering in the TSP tour for city i. Ties were
broken in left t o right order. For example, the genome
(3,2,1,5,3) for a 4-city TSP problem means that City1 is
visited third, City2 second, City3 first, City4 fifth, City5
is fourth, and the tour completes by returning to City3.
Although this is not a particularly good encoding of the
TSP for a genetic algorithm (GA) (see, e.g. [lo, 57 for
encodings developed specifically to perform well on the
TSP). However, our goal was t o evaluate restart strate-
gies (as opposed to finding good solutions for the TSP),

d(ci, cj)

CY:: d(cr(i),c=(i+l)) + d(~x(n),cx(I))

1307

and we used the TSP as a testbed because it is a well-
known, convenient class of problems for which problem
instances can be easily generated, encoded, and rapidly
evaluated.

A steady-state genetic algorithm with uniform
crossover [ll] was used. The mutation opera-
tor was the standard bit flip operator. A rank-
based selection method was used [12], where the
individual selected had the rank: SelRank =

i.e., the higher the bias, the more the likely it is
that high ranked individuals are selected.' Likewise,
when deleting individuals from the population, the index
of the individual selected for deletion is (Population -
SelRank) (the higher the bias, the less likely it is that
high ranked individuals are deleted).

(Bias-dBiaaZ -4.0(Bias-1) x R A N D)
Population 2.0/(Bias- l)

3.2 Performance Database Generation

We generated a performance database as follows:
Ten random 40-city TSP instances were generated as

described above.
54 different configurations of the GA were generated,

by selecting values for four control parameters (popu-
lation size, crossover probability, mutation probability,
selection bias) , where:

Population E {10,100,250},

Bias E { l . O , 1.5,2.0}, the selection bias,

Pr(Crossover) E {0.0,0.25,0.5}, the probability of
uniform crossover , and

Pr(Mutate) E {0.01,0.05}, the probability of each
bit being flipped.

For each of the TSP instances, we executed each of
the GA configurations using 30 different random seeds.
Each run was for 20000 iterations (objective function
evaluations), i.e., the number of generations was chosen
so that the poplation x NumGenerations = 20000. Ev-
ery 1000 iterations, the length of the shortest tour found
so far by the current GA configuration for the current
TSP instance for the current random seed was stored in
the performance database.

For each TSP instance, we found the lma, and lmin,
the longest and shortest tour lengths found (by all GA
configurations and random seeds), and normalized all
of the performance database entries by rescaling each
value to a range between [0,1], according to the formula
Orescaled = (Voriginal - L i n > / (l m a z - lmin).

' R A N D is a function that returns a random floating point num-
ber between 0 and 1.

3.3 Anytime Algorithm Portfolios vs. Individual
Algorithms

We compared the performance of the anytime algorithm
portfolio approach versus the performance of the stan-
dard singlealgorithm approach.

First, using the performance database gener-
ated above, we used Using synthesize-portfolio where
T=30000, k=1000, NumSamples = 100, we opti-
mized a portfolio for our distribution of 40-city TSP
instances. We call this the BestPortfolio. In
this experiment, we found that BestPortfolio =
{ (A I , l O O O O) , (A2,3000), (A3, l O O O O) , (Ad, 7000)}, where:

AI is the configuration with Population=lO,
PT(CTOSSWeT)=0.25,PT(hfUtate)=O.Ol,
Bias=2.0,

A2 is the configuration with Population=100,
PT(CTOSsoveT)=O.O,PT(Mz l ta te)=o .o5 , Bias=1.5,

A3 is the configuration with Population=lO,
P T (C T O S S o v e T) = 0 . 2 5 , P T (h f ~ ~ a t e) = o . o l ,
Bias=P.O, and

A4 is the configuration with Population=100,
P T (~ T O s s o v e T) = 0 . 5 , ~ T (h f ~ t a t e) = ~ . ~ ~ , Bias=1.5.

Then, for each of the 54 GA configurations
from which the performance database was gener-
ated, we optimized a single-algorithm restart strat-
egy BestSingleAlgRestarti (1 5 i 5 54). We
executed synthesize-portfolio with T=30000, k=1000,
NumSamples = 100, but for each run, we restricted
the domain of algorithms to Ai, where Ai was the i th
GA configuration. That is, BestSingleAlgRestarti is
the best static restart strategy for GA configuration i
for our distribution of 40-city TSP instances. We then
selected the single algorithm restart strategy with the
best expected performance, BestSingleAlgRestart.

Note that BestSingleAlgRestart is the configu-
ration which would be selected as "the most use-
ful single configuration" of the GA in a traditional
parameter tuning approach, i.e., it is the set of
control parameter settings which, on average, per-
forms best on our problem distribution. In this ex-
periment, we found that BestSingleAlgRestart =
{ (A , l O O O O) , (A, SOOO), (A, 3000), (A, 9000)}, where A
is the GA configuration with parameter values:

0.01, Bias = 2.0
Ten new random 40-city TSP instances were gener-

ated using the same problem generator used to gen-
erate the problems used for creating the performance
database. These test problems were labeled 40-cities-1,
.. 40-cities-IO.

For each test problem, we applied both the
BestPort f olio and BestSingleAlgRestart single a l g e
rithm restart strategies for'T = 30000. The mean score

PqpzllatiVTl 10, PT(CTOSS#VeT) = 0.5, PT(kfUtate) =

I308

Problem I BestPort f olio
40cities-1 1 0.102 (0.041)
40cities-2
40cities-3
40cities-4
40cities-5
40cities-6
40cities-7
40cities-8
40cities-9

40cities- 10

0.074 (0.042)

0.072 (0.021)
0.089 (0.027)
0.095 (0.038)
0.109 (0.024)
0.082 (0.015)
0.097 (0.032)
0.124 (0.036)

0.111 (0.019)

BestSingleAlgRestart
0.124 (0.045)
0.071 (0.050)
0.131 (0.029)
0.094 (0.018)
0.127 (0.024)
0.093 (0.030)
0.111 (0.034)
0.099 (0.032)
0.113 (0.036)
0.110 (0.022)

Table 1: Summary of results: mean and standard devia-
tion of the best scores (normalized tour length) found by
the BestPort f olio and BestSingleAlgRestart strate-
gies on ten 40-city TSP instances.

(length of shortest tour found in run) and variance of 25
independent runs were recorded.

The results are summarized in Table 1. For each prob-
lem, we show the mean best objective function score and
standard deviation (of 30 runs) of the BestPortfolio
score, as well as the mean and variance (or 30 runs) of
the BestSingleAlgRestart strategy.

For six out of the ten test TSP
instances, BestPwt f olio significantly outperformed
BestSingleAlgRestart. For three instances (4Ocities-
2, 4Ucities-6, 40cities-7), the results are comparable.
In one instance (40cities-10), BestSingleAlgRestart
clearly outpermed BestPort f olio. Thus, on aver-
age, BestPort f olio performed significantly better than
BestSingleAlgRestart.

4 Related Work

Algorithm portfolios are based on the theory of in-
vestment portfolios developed in the field of economics.
Portfolio theory was developed to answer the question:
“How should one allocate his/her financial assets (stocks,
bonds, etc) in order to maximize expected returns while
minimizing returns?” The anytime algorithm portfolio
framework is quite similar t o the singleperiod portfolio
model developed by Markowitz [8]. A significant dif-
ference between anytime algorithm portolios and invest-
ment portfolios is that the expected utility of an anytime
algorithm portfolios is the expected value of the best s e
lution computed by the portfolio (i.e., a MAX opera-
tion), while the expected rate of return of an investment
portfolio is a weighted average of the expected returns
of its component investments. As a consequence, com-
puting the optimal anytime algorithm portfolio is not
as straightforward as computing an optimal investment
portfolio.

Huberman, Lukose and H o g [7] recently proposed
the use of “computational portfolios” composed of mul-
tiple algorithms to solve combinatorial search problems

and other hard computational problems. They showed
how two or more Las Vegas algorithms2 executed con-
currently can result in an algorithm portfolio whose ex-
pected time and variance to find a solution to an NP-
complete problem (graph coloring) is significantly better
than its component algorithms. Gomes and Selman [4]
applied a portfolio Las Vegas algorithms to the quasi-
group completion problem.

Here, we have extended the algorithm portfolio ap-
proach to resourcebounded optimization, combining in-
stances of evolutionary algorithms into algorithm port-
folios for optimization. Unlike the Las Vegas algorithms
studied in previous work on algorithm portfolios, opti-
mization algorithms such as evolutionary algorithms are
anytame algorithms [14] that can be interrupted at any
time to return a solution with some ~ t i l i t y . ~ As a result
of this, a significant difference between our work and this
previous work in algorithm portfolios is that in the previ-
ous work, the goal is to minimize expected time to find
a solution of acceptable quality (there is no deadline),
while our framework has a resource bound.

The decision-theoretic framework we adopted in our
study of algorithm portfolios is related to work on
decision-theoretic reasoning and meta-level reasoning in
artificial intelligence. Much of the previous work in the
area has focused on meta-level control of the tradeoff
between computation and action (c.f., [6, l]), as well
as lower-level resource allocation problems (e.g., which
nodes to explore in a search tree) (c.f. [9]). Zilberstein
and Russell [15] studied the composition of systems of
anytime algorithms, where each component is an any-
time algorithm whose output is the input t o the next
anytime algorithm in the system (e.g., a robot naviga-
tion system system composed of an anytime sensing al-
gorithm and an anytime navigation algorithm).

5 Discussion/Future Work

This paper proposed anytime algorithm portfolios as a
method for allocating limited computational resources
among sets of candidate control parameter values for
evolutionary algorithms. Using the TSP problem d e
main, we showed that the anytime algorithm portfolio
approach yields a resource allocation among multiple
several control parameter value sets which can be su-
perior to that of the traditional single configuration r e
source allocation model.

It is important to note that applying the algo-
rithm portfolio technique requires no more data
than what is already collected in the course of
a standard parameter tuning experiment. What

‘Algorithms which always produce the correct solution to a
problem, but with a distribution of solution times

31t is possible to view Las Vegas algorithms as a special case
of an anytime algorithm where the utility of all partial solutions
have the identical, worst utility score.

1309

we propose is simply an alternative way to exploit
the data that is collected in a standard parame-
ter tuning experiment. In addition, the application of
the technique to a new domain is a completely domain-
independent process.

An interesting consequence of being able to synthe-
size algorithm portfolios is that in some domains, it may
be worthwhile to focus some research on algorithms that
have poor expected performance on most instances of a
problem class but excel on some rare instances where
the “better” algorithms exhibit pathological/poor per-
formance. Although such algorithms would likely be dis-
carded/ignored because of poor average performance in
the standard methodology of comparative empirical al-
gorithm research, the portofolio framework provides a
rational approach to allocating some computational re-
sources to these “outlier-specific” algorithms.

Although in this paper, we applied portfolios in a con-
text where each of the component “algorithms” was a
different parameterization of the same basic GA, portfo-
lios can also be straightforwardly applied when the set
of algorithms encompasses a much lager domain of al-
gorithms. In future work, we will investigate combina-
tions of evolutionary algorithms with significantly dif-
ferent algorithms (e.g., systematic heuristic search and
simulated annealing). Furthermore, it should be noted
that algorithm portfolios could be applied in conjunction
with “self-adaptive” algorithms which automatically ad-
just their control parameters within a single run, since
even these adaptive algorithms have meta-level parame-
ters or initial values for parameters, and using portfolios
to allocate resources between multiple sets of these meta-
level parameters may be worthwhile.

The resource-bounded optimization model discussed
in this paper is only one model t o which anytime algo-
rithm portfolios can be applied. Other interesting mod-
els which we will investigate include:

0 Fixed resource cost - a model where the resource
bound is not set a priori but each unit of resource
usage has a cost, and the utility function for the
portfolio must consider minimization of resource us-
age. This is the model adopted in [7,4] in their work
with portfolios of decision algorithms.

0 Stochastic deadline model - a model where the re-
source bound is not known a priori; the system
must maximize utility some distribution of dead-
lines. This model is particularly interesting because
of the opportunity to exploit the risk-reduction po-
tential of algorithm portfolios.

One major limitation of the current portfolio frame-
work is the assumption that we restrict ourselves to
restart strategies in which each restart is independent.
While this is an accurate model for many circumstances,
a significant extension to the model would address the

issue of non-independent restarts, e.g., evolutionary al-
gorithm variants that can be “seeded” by the best in-
dividuals from previous restarts. Conditional perfor-
mance profiles, proposed by Zilberstein and Russell [15]
for modeling sequences of anytime algorithms whose out-
put quality is dependent on the input, may be useful for
this purpose.

Acknowledgments

Portions of this research were supported by Jet Propul-
sion Laboratory, California Institute of Technology, un-
der contract with the National Aeronautics and Space
Administration.

Bibliography

[l] M. Boddy and T.L. Dean. Deliberation schedul-
ing for problem solving in time-constrained environ-
ments. Artificial Intelligence, 67(2):245-85, 1994.

[2] B. Efron and R. Tibshirani. Statistical data in the

[3] A. Fukunaga. Restart scheduling for genetic algo-
rithms. In Proc. Parallel Processing from Nature
(PPSN), pages 357-358, 1998.

computerage. Science, 253:390-395, 1991.

[4] C.P. Gomes and B. Selman. Algorithm portfolio
design: theory vs. practice. In Proc. Uncertain an
Artificial Intelligence (UAI), 1997.

[5] A. Homaifar, S. Guan, and G.E. Liepins. A new
approach on the traveling salesman problem by ge-
netic algorithms. In Proc. International Conf. on
Genetic Algorithms (ICGA), pages 460-466, 1993.

[6] E.J. Horvitz. Computation and oction under
bounded resources. PhD thesis, Stanford University,
Program in Medical Information Science, 1990.

[7] B.A. Huberman, R.M. Lukose, and T. Hogg. An
economics approach to hard computational prob-
lems. Science, 275(5269):51-4, January 1997.

Finance, 7(1):77-91, 1952.’
[8] H.M. Markowitz. Portfolio selection. Journal of

[9] S.J. Russell and E. Wefaldf. Do the Right Thing.

[lo] T. Starkweather, S. McDaniel, K. Mathias,
D. Whitley, and C. Whitley. A comparison of ge-
netic sequencing operators. In Proc. International
Conf. on Genetic Algorithms (ICGA), pages 69-76,
1991.

MIT Press, 1991.

[ll] G. Syswerda. Uniform crossover in genetic algo-
rithms. In Proc. International Conf on Genetic
Algorithms (ICGA), 1989.

1310

[12] D. Whitley. The genitor algorithm and selection
pressure: Why rank-based allocation of reproduc-
tive trials is best. In Proc. International Conf. on
Genetic Algorithms (ICGA), pages 116-121,1989.

[13] D.H. Wolpert and W.G. Macready. No free lunch
theorems for search. Technical Report SFI-TR-05-
010, Santa Fe Institute, 1995.

[14] S. Zilberstein. Using anytime algorithms in intelli-
gent systems. AI Magazine, 17(3):73-83, 1996.

[15] S. Zilberstein and S. Russell. Optimal composition
of real-time systems. Artificial Intelligence, 82(1-
2):181-213, 1996.

131 1

