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Abstract—The goal of the Onboard Autonomous Science 
Investigation System (OASIS) project at NASA's Jet 
Propulsion Laboratory (JPL) is to evaluate, and 
autonomously act upon, science data gathered by in-situ 
spacecraft, such as planetary landers and rovers. 1,2 Using 
the FIDO rover in the Mars Yard at JPL, we have 
successfully demonstrated a closed loop system test of the 
rover acquiring image data, finding rocks in the image, 
analyzing rock properties and identifying rocks that merit 
further investigation.  When the system on the rover alerts 
the rover to take additional measurements of interesting 
rocks, the planning and scheduling component determines if 
there are enough resources to meet this additional science 
data request.  The rover is then instructed to either turn 
toward the rock, or to actually move closer to the rock to 
take an additional, close up, picture. In addition to these 
hardware integration successes, the OASIS team has also 
continued its autonomous science research by 
collaboratively working with other scientists and 
technologists to identify and react to other scientific 
phenomena - such as clouds and dust devils.   Prototype dust 
devil and cloud detection algorithms were delivered to an 
infusion task which has refined the algorithms specifically 
for Mars Exploration Rovers (MER) and is integrating the 
code into the next release of MER flight software. 
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1. INTRODUCTION 

With the ongoing success of the Mars Exploration Rovers 
(MER), scientists are starting to acknowledge the benefit 
that autonomous operations might bring to the table and are 
now requesting “smarter” rovers with a greater capability 
for autonomy for future missions.  

There are a number of autonomous rover capabilities 
currently in development for future in-situ missions. One 
key capability, autonomous onboard science, continues to 
grow in importance as rover travel distances continue to 
dramatically increase. OASIS [1, 2, 3], an Onboard 
Autonomous Science Investigation System, is a JPL-
managed project designed to maximize mission science on 
rover missions with long traverses. 

OASIS is designed to operate onboard a rover identifying 
and reacting to serendipitous science opportunities.  It 
analyzes data the rover gathers, and then prioritizes the data 
based on criteria set by the science team.  At the next 
opportunity for transmitting data back to Earth, the data is 
already prioritized – ensuring that the most valuable data is 
sent first. 

As OASIS is working to prioritize the data, it is also 
searching for specific targets it has been told to find by the 
science team.  If one of these targets is found, it is identified 
as a new science opportunity and a “science alert” is sent to 
the planning and scheduling component of OASIS.  After 
reviewing the rover’s current operational status to ensure 
that it has enough resources to complete its traverse and act 
on the new science opportunity, OASIS changes the 
command sequence of the rover.   

The rover is instructed to stop its current traverse, locate the 
rock that triggered the science alert, and take additional data 
(e.g. color image, closer grayscale image, spectrometer 
reading) on that rock.  In addition, the system now enables 
the rover to either turn and collect data on the identified 
target rock or to drive to the target so that closer 
measurements can be collected.  Once it has completed this 
additional measurement, the rover reverts back to its 
original plan and continues on its traverse.     
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The OASIS system includes three primary components.  In 
Section 2, we briefly describe the system and these 
components.  The remainder of the paper emphasizes recent 
advances in the OASIS system, describing new capabilities 
in each of the three components in Sections 3-5.  Validation 
of autonomous systems is an ongoing challenge.  We 
describe the ongoing performance testing of the full system 
in Section 6.  In Section 7 we describe work related to the 
individual components as well as other autonomous systems 
under development and testing.  Finally, a summary and 
conclusions are presented in Section 8.   

2. OASIS SYSTEM OVERVIEW 

To assess and subsequently prioritize the scientific value of 
a set of collected images, we must first extract the 
information found within the images.  A geologist in the 
field gets information about a site by identifying geologic 
features including the albedo, texture, shape, size, color, and 
arrangement of rocks, and features of the topography such 
as layers in a cliff face.  The geologist analyzes and assesses 
this data, and then takes some action based on the analysis, 
such as taking a sample or taking some additional 
measurement of an interesting rock. 

In order for scientists to allow an autonomous system to 
help investigate the traversed region, the system must be 
able to perform, albeit in a very simple way, these same 
types of functions.  This system thus is used to point out 
rocks or other objects of interest to the scientist. 

There are three major components that comprise OASIS: 

• Extract Features from Images: Enables 
extraction of features of interest from collected 
images of the surrounding terrain. This module 
both locates rocks in the images and extracts rock 
properties (features) including shape, texture and 
albedo.   

• Analyze and Prioritize Data: Uses the extracted 
features to assess the scientific value of the 
planetary scene and to generate new science 
objectives that will further contribute to this 
assessment. This module consists of three separate 
prioritization algorithms that analyze the collected 
data and prioritize the rocks.  A new set of 
observation goals is generated to gather further 
data on rocks that either conform to the pre-set 
specifications by the science team, or are so novel 
in comparison to the other rocks, that another data 
measurement may be required. 

• Plan and Schedule New Command Sequence:  
Enables dynamic modification of the current rover 
command sequence (or plan) to accommodate new 

science requests from the data analysis and 
prioritization module.  A continuous planning 
approach is used to iteratively adjust the plan as 
new goals occur, while ensuring that resource and 
other operation constraints are met.  

3.   RECENT FEATURE EXTRACTION RESEARCH: 

DUST DEVILS AND CLOUD DETECTION 

Extensive effort on the OASIS task has been spent on 
extracting features relevant to geology as this is a heavy 
focus of in situ Mars exploration.  Over the past year, 
however, algorithms to observe and opportunistically 
identify atmospheric phenomena were developed.  The 
atmosphere of Mars is highly dynamic with phenomena 
including clouds and dust devils observed by the MER 
rovers.  Currently, the MER mission monitors for these 
events by performing observation campaigns where 
sequences of images are acquired with the hope of imaging 
the event in one or more of the frames.  There is no 
guarantee that the phenomena of interest will be captured.  
For example, only around 10-25% of the cloud campaign 
images collected have clouds in them.  Downloading these 
images without the phenomena of interest represents an 
inefficient use of limited bandwidth.   

The two most common methods for detecting dust devils are 
the comparison of two or more spectral bands of the scene 
and the detection of motion in the scene using a temporal 
sequence.  In OASIS, we have selected the latter as it has 
application to imagery acquired with the Pancam, the 
Navcam and either set of Hazcams.  In contrast, algorithms 
that require multiple spectral bands can only be used with 
the Pancam which is the only camera set equipped with a 
filter wheel. In theory, detecting motion in the scene is not 
equal to detecting dust devils as clouds also move.  In 
practice, if image noise can be accounted for, the vast 
majority of changes in any sequence of images of a static 
scene of Mars will be caused by dust devils.    

For the following descriptions, all the images used in event 
detection go through a process of border cropping and 
minimization.  The border cropping avoids including border 
effects from the frame grabber in the estimation of image 
statistics while image minimization addresses both the 
constraint of low computational cost and does an initial 
noise reduction by a factor of 21/ k , i.e., pixels are 
averaged over a k k× window.  In all cases, the standard 
deviation of the image noise is estimated as a difference of 
Laplacians [4]. 

To a great extent, the problem of detecting motion between 
two images is reduced to taking the difference between the 
two images and thresholding the result.  Values above a 
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threshold correspond to regions of the images that have 
changed.  If we know beforehand that the feature has a very 
distinctive albedo (e.g., a dust devil that is bright in a 
Martian scene that is dark) then the difference of the images 
produces a large difference in intensity that can be 
thresholded with confidence.  Indeed, motion that is clear to 
a person can be confidently extracted using this method.  
The challenge for robust automated detection occurs when 
the difference in the intensity of the two images, at the 
location of the change, is comparable in magnitude to the 
noise of the image.  This is the case whenever the dust devil 
is faint.  In such cases, they can usually only be observed by 
a person when the sequence of images is played as a movie. 
 For such situations, the threshold cannot be selected easily 
as it will invariably consider image noise as change (false 
positive), actual change as noise (false negative) or both.  
As noise is a function of parameters over which we have no 
control (e.g., time of day, direction of camera with respect 
to sun, etc.), a fixed threshold is bound to perform correctly 
only for a narrow set of conditions. 

The detection of faint dust devils in the image takes into 
account the noise of the image and uses the fact that a dust 
devil is bounded within a portion of the image.  To reduce 
the noise, we detect changes in image iI  using the average 

of n images of the sequence, oI , and ioI , the average of the 

n-1 images of the sequence that excludes iI , i.e.,  
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image noise for all the areas where iI  was equal to the other 
images and the average of the image noise plus the change 
for the areas where iI  was different to the other images of 
the sequence, i.e., the intensity of the change is damped by a 
factor of 1/n. Assuming that the major component of the 
image noise is zero-mean Gaussian noise, then the areas 
with no change tend to zero while the areas with change do 
not.  Thus, although the intensity of the motion information 
has been damped, the motion can be detected because the 
areas with no change tend to zero faster than those with 
change.  To complement this approach we use a threshold 
biased by the local noise and use blob filters that ensure that 
there are more than a given number of detections within a 
local region. 

The algorithm was tested on 25 image sequences, all 
acquired on Mars using the left Navcam of the Opportunity 
rover.  Each sequence had a length that varied between 6 
and 20 images.  The set of sequences was biased toward 
faint dust devils.  Given these sequences, we analyzed all 
the possible subsets of a given number of contiguous 
images for 4, 6, and 8 consecutive images.  The results are 
in Table 1.  Figure 1 is a scene with several dust devils.  
The regions of each dust devil identified using the algorithm 
described are marked.  

 

Figure 1.   Result of motion detection in an image.  Two of the dust devils are evident (3rd and 5th red box), while the 
other three require the sequence to play out to become apparent. 
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The algorithm was designed to take either a number of 
images at a time and produce the corresponding result or, to 
run in batch, taking one image at a time and analyzing large 
sequences.  In the latter case, the average of the images is 
replaced by a trailing average. 

The detection of clouds has limitations similar to those of 
the dust devil, i.e., clouds that can be easily observed in the 
sky can be detected easily while those that are extremely 
faint cannot, as their values approach the noise levels of the 
image.  The set of images from MER available for the 
design of the algorithm consisted primarily, not of large 
sequences, like in the dust devil case, but mostly of single 
images or sequences of up to 3 images each.  This prevents 
a consistent approach to detect clouds using motion.  In 
addition, the motion may be variable with changing winds 
and other factors.  Thus, the detection of clouds is done on 
individual images. 

The approach to detect clouds is to assume that any large 
changes in the intensity of the sky of the image must 
correspond to clouds; this assumption holds true with the 
exception of large changes of local intensity due to zero-
mean Gaussian noise (e.g., particularly noticeable at dusk 
and dawn) and large changes of global intensity due to 
camera effects (e.g., vignetting-like effect that darkens the 
corners of the image under low-light conditions).  The first 
step to analyze the sky intensity is to segment the image 
using the sky detector previously developed under OASIS 
[5]. The result of the sky detector is used to mask out the 
ground and, if desired, to buffer an area above the skyline, 
which avoids illumination effects frequently found near the 
horizon.   

Once the sky has been segmented, we search for changes in 
the sky by using an edge detector; strong edges indicate 
large gradients on the sky that are caused by the presence of 
clouds.  Again, the threshold that determines the value of 
the edge that corresponds to a cloud is weighted by the 
noise of the image. 

The algorithm was tested using a set of 210 images taken on 
Mars by Spirit and Opportunity.  All of the images 
contained the sky, and most of the images contained both 
sky and ground.  47 of the images were images that an MER 
scientist had labeled as containing clouds, while the 
remaining 163 images were selected randomly from the set 
of all MER images that contained the sky, and manually 
verified as not containing clouds. The images with clouds 
were further divided into 29 images that contained evident 
clouds, 13 images that contained soft, hard-to-see wispy 
clouds and 5 images for which the scientists could not 
decide if there was a cloud or not.  For this set, the 
algorithm detected 100% of the evident clouds, 100% of the 
wispy clouds and 60% of the ones in the undecided subset.  
Likewise, it stated correctly that were no clouds in the no-
cloud set 93.2% of the time.  In summary, the algorithm was 
correct at  

 

identifying whether or not a cloud was present in 93.3% of 
the test set; there were 3 false negatives and 11 false 
positives.  A sample image and the clouds that were 
detected are shown in Fig. 2. 

The dust devil detector and cloud detection algorithms were 
delivered to an infusion task, which further refined the 
algorithms for MER.  The code has been integrated with the 
MER flight software, and is scheduled to be uploaded to the 
MER rovers in the spring of 2006 as part of the R9.2 
software upgrade, pending final regression testing. 

 

Figure 2.  An example of cloud detection.  Left image is 
the original image and the right image is the result of the 
cloud detection algorithm. 

 

4.  DATA ANALYSIS:  

INSTRUMENT TARGET SELECTION 

A number of rover remote sensing instruments have a very 
narrow field-of-view and thus require selection of specific 
focused targets for sampling.  Such instruments include 
mini-TES, LIBS, and infrared point spectrometers.  The 
typical scenario for selecting targets for these instruments is 

Table 1. Results from dust devil detection algorithm. 

No. 
images n-tuples + - correct False - False +

4 279 120 159 237 
(84.9%) 10 32 

6 228 121 107 190 
(83.3%) 14 24 

8 180 116 64 155 
(86.1%) 10 15 
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to manually select the targets using data that has been 
previously downloaded.   This means that targets can only 
be selected from the site at which the rover is in at the start 
of a day (for which data has already been downloaded the 
night before).   
 
After a traverse day, samples from the new site could be 
collected by ‘blindly’  targeting at the end of the day in 
addition to collecting samples the following day after the 
science team has reviewed the imagery of the new site.    
Further, during a traverse, samples from these instruments 
can only be collected using blind sampling.   By analyzing 
data onboard as the rover traverses and at the end of its 
traverse, targets for these instruments can be identified 
automatically.   We have implemented a method for 
automatically selecting rock targets for sampling at the end 
of a traverse.  This could be used, for example on the Mars 
Science Laboratory (MSL) to select targets for the 
ChemCam instrument to sample.   
 
Two scenarios that lead to two different levels of targeting 
are being explored.  In the first scenario, an image (Mast 
Cam – color or Navcam – grayscale) is taken and analyzed 
onboard.  Regions on the surface that are rocks are 
identified and one or more rock regions selected as targets 
for other instruments.  In the second level, a Mast Cam 
image is taken and analyzed, but in this case in addition to 
identifying the location of rocks, some properties of the 
rocks are estimated and a priority for the rock targets is 
determined based on the extracted properties.  The second 
scenario is most useful when there are more rocks in a scene 
than can immediately be analyzed.   
 
The approach is to first identify the rocks in the scene using 
the rock finder in the feature extraction component.  Points 
on these identified rocks are then selected for targeting.  
The problem is distinctly different from accurately 
determining the outline of a rock because the result is the 
selection of a single point on each rock.   
 
A prototype method has been tested on images forming the 
Legacy panorama and the Mission Success A panorama - 
both from the Spirit rover.  The performance of the target 
selection algorithm was validated by using hand-labeled 
rocks as the ground truth.  There were 22,079 hand-labeled 
rocks hand in the Mission Success A panorama and 17,596 
hand-labeled rocks in the Legacy panorama.  For this 
experiment, both the Mission Success A and Legacy 
panoramas were divided into 1024 x 1024 sub-images.  
Within each sub-image, a point was selected as the primary 
target.  It was then assessed whether or not this point 
correctly represented a rock.  We compared the method to 
random point selection.   
 
The results from Table 2 show that for the Mission Success 
A panorama, the target point selected correctly belonged to 
a rock in 70% of the sub-images,.  In contrast, if a point in 
the image was randomly selected there was only a 9% 

chance of selecting a rock pixel.  This represents a nearly 
8X improvement in the probability that a desired target 
(rock) will be selected.      

Table 2.  Accuracy of target selection algorithm. 

5.  PLANNING, SCHEDULING AND EXECUTION 

Once the data analysis software has identified a set of 
new science targets, these targets are passed to onboard 
planning and scheduling software that can dynamically 
modify the current rover plan in order to collect the new 
science data. This component takes as input the new set 
of science requests, the current rover command sequence 
(or plan), and a model of rover operations and 
constraints.  It then evaluates what new science tasks 
could be added to the current plan while ensuring other 
critical activities are preserved and no operation or 
resource constraints are violated.  
 

CASPER Planner  

Planning and scheduling capabilities are provided in OASIS 
by the Continuous Activity Scheduling, Planning and Re-
Planning (CASPER) system [6, 7]. CASPER provides a 
generic planning and scheduling application framework that 
can be tailored to specific domains.  Its components include: 

• An expressive modeling language to allow the user 
to naturally define the application domain, 

• A constraint management system for representing 
and maintaining domain operability and resource 
constraints, 

• A set of search strategies and repair heuristics, 

• A temporal reasoning system for expressing and 
maintaining temporal constraints, 

• A graphical interface for visualizing plans, and 

• A real-time system that monitors plan execution 
and modifies the current plan based on activity, 
goal, state and resource updates.  

 Mission 
Success A Legacy 

Percent of images for which 
primary target was a rock 70 66 

Percent of randomly  selecting a 
rock pixel  9 12 
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CASPER employs a continuous planning technique where 
the planner continually evaluates the current plan and 
modifies it when necessary based on new state and resource 
information.  Rather then consider planning a batch process, 
where planning is performed once for a certain time period 
and set of goals, the planner has a current goal set, a current 
rover state, and state projections into the future for that 
plan.  At any time an incremental update to the goals or 
current state may update the current plan. This update may 
be an unexpected event (such as a new science opportunity) 
or a current reading for a particular resource level (such as 
power).  The planner is then responsible for maintaining a 
plan consistent with the most current information. And 
since things rarely go as expected during planetary surface 
operations, the planner stands ready to continually modify 
the plan. 
 
CASPER models a spacecraft’s resources (and states) while 
also defining domain constraints and hardware 
functionality. The model includes information on the 
environment, such as the timeframe of each plan, the types 
of instruments available on the rover, as well as information 
on rover constraints which may detail the minimum and 
maximum usage of onboard resources or transitions from 
possible execution states to renewal states at particular 
times of day. A model of rover activities is given to 

CASPER, each of which estimates the predicted amount of 
resources and time which will be used, while also stating 
which hardware components will be required while 
performing the science. Some components may be atomic 
and cannot be used by two activities at the same time, while 
others are aggregate and may be used by a limited number 
of activities at any given time. 
 
A plan consists of a set of grounded (i.e., time-tagged) 
activities that represent different rover actions and 
behaviors. Activities can be at different levels of 
abstraction, where low-level activities are typically sent to 
an executive system for execution on the rover hardware. 
For example, a plan typically contains several traverse 
activities that move the rover between different locations in 
order to visit science targets. Rover state in CASPER is 
modeled by a set of plan timelines, which contain 
information on states (such as rover position) and resources 
(such as power).   
 
Timelines are calculated by reasoning about activity effects 
and represent the past, current and expected state of the 
rover over time. As time progresses, the actual state of the 
rover drifts from the state expected by the timelines, 
reflecting changes in the world.  State updates are relayed 
back from sensors and the rover control software. As these 

 

Plan 
Activities

(traverse, image)

Resource
Timelines

(power, memory)

State
Timelines

(position, sun-angle)

Time & Date
(time advances 

left to right)

Plan 
Activities

(traverse, image)

Resource
Timelines

(power, memory)

State
Timelines

(position, sun-angle)

Time & Date
(time advances 

left to right)

 

Figure 3: Sample rover plan displayed in planner GUI. Plan activities are shown as bars in upper portion of window, 
where bars represent the start and end time of each activity. State and resource timelines are shown in bottom portion of 
screen and show the effects of the plan as time progresses. Time is depicted as advancing from left to right. 
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updates are received, CASPER updates the relevant timeline 
models with actual state values, resource values, activity 
completion times, etc.  Each of these updates may introduce 
problems into the current plan, such as a power over-
subscription due to a long traverse or an instrument being in 
the incorrect position to perform a particular science 
reading. These problems (or plan conflicts) cause CASPER 
to perform plan modifications to bring the plan back into 
sync with the current state and set of goals. An example of a 
plan in the CASPER GUI is shown in Figure 3. 
 

Initial Plan Generation 

The responsibility of the planning and scheduling system in 
OASIS consists of both initial plan generation and 
dynamically modifying the plan during execution in 
response to unexpected events. For initial plan generation, a 
set of prioritized science goals can be provided to the 
planner and represent science targets that are being 
requested by mission scientists on Earth. Initial plan 
generation produces a plan for a certain time period (e.g., on 
Martian day) and typically more goals are provided that can 
be handled during that time period due to time or resource 
limitations. There are several methods of deciding which 
science goals to include in the initial plan, based on priority 
and other cost function parameters such as distance between 
targets and the sun angle at certain times of day. In our 
current system, we use a “strict priority” method as a model 
for generating the initial plan and the type of action to take 
when the plan must change.  A strict priority method states 
that higher priority goals are always more desirable than 
lower priority goals, no matter how many lower priority 
targets could be included in a plan for even one higher 
priority target. Other rules or methodologies could also 
easily be adopted and have been used for previous tests. 
 
To guarantee an optimal initial plan, based on our specified 
criteria, we use Depth First Branch and Bound (DFBnB) to 
order the set of science goals.  To respect the strict priority 
rule, plans with the largest number of high priority targets 
are scored the highest.  Bounding occurs when the priorities 
of the remaining goals to be added to the search tree’s 
“branch” are not as high as the priorities of the goals of the 
best plan found so far, when the accumulated distance cost 
of the “branch” is higher than the best plan found, and when 
the current “branch” oversubscribes time and/or resources. 
Temporal constraints on science goals are also handled 
during this process. The result is a conflict-free plan with as 
many of the highest priority targets included as possible.  
 
Target ordering uses the shortest distance, fits in a limited 
plan timeframe, and uses only the amount of resources that 
are initially allowed.  The DFBnB algorithm can also be 
easily adjusted for many different bounding criteria. For 
example, one future change might be to relax the strict 
priority algorithm specifically for plans with temporally 
constrained activities. If the highest priority target not 

included in the current plan is constrained to start at 14:00 
and the current time is 10:00, we may want to try to add 
other lower priority targets that could fit in the plan now, 
rather than wait for the opportunity to add-in the high 
priority target. With this expansion comes the need to define 
a timing tolerance for how close in time to the higher 
priority target we can be to allow this relaxed behavior. 
 
Iterative Repair 

To repair problems and ensure plan consistency during 
plan execution, CASPER uses an iterative repair 
algorithm, which classifies plan conflicts and attacks 
them individually. Conflicts occur when a plan constraint 
has been violated where this constraint could be temporal 
or involve a resource, state or activity parameter. 
Conflicts are resolved by using one or more plan 
modifications such as moving, adding, or deleting 
activities.  One example of a conflict is when a new 
science activity oversubscribes a resource such as power 
or memory.  Possible resolutions to this conflict might be 
moving the science activity to a part of the plan that 
doesn’t oversubscribe that resource, deleting the science 
activity, or moving and/or deleting other contributing 
activities. The decisions made are based on the conflict 
types and the built-in heuristics. 
 

Continuous Optimization  

When a deletion of a science goal is required due to 
unforeseen events during plan execution, the goal’s status is 
changed, but it is not permanently deleted from the plan. 
The goal becomes “requested”. Goals that could not be 
initially included in the plan due to time or resource 
limitations are also in this state. When favorable events 
occur which free up resources and time, these goals may be 
added back to the plan through the use of the continuous 
optimization procedure. This procedure is always trying to 
improve the score of the current plan by adding-back 
science goals or adding-in newly discovered goals. As each 
activity in the plan finishes, the state of the plan may be a 
little more or a little less accommodating to new goals. To 
ensure conflicts on hard constraints are always resolved, an 
unconflicted plan’s score is always better than a conflicted 
plan. Thus plan conflicts are always resolved before 
continuous optimization attempts to improve the plan 
further by adding additional science goals. 

Handling Science Alerts  

As described previously, onboard data analysis can use 
collected data, such as hazard camera images, to detect 
interesting rocks. When an interesting rock is discovered, a 
“science alert” is sent to the planner. The planner then 
attempts to add-in the appropriate traverse and image 
activities needed to achieve the opportunistic science while 
maintaining the state of the existing plan. See Fig. 4 for an 
example of an image taken in response to a science alert 
from a detected rock. In this example, the analysis system 
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was set to detect rocks of light albedo. 
 

      

Figure 4.  Sample image that was taken in response to a 
science alert on the JPL FIDO rover 
 
 
In our current system implementation, we typically assign 
science alerts a lower priority than any initial (or ground-
specified) science target. Science alerts are treated 
differently, because they are considered supplemental 
science. Further, science alerts must be handled in a short 
timeframe. If they are not planned for quickly, the rover 
could move far past them, creating a more difficult problem 
to solve. The current constraints and state of the plan may 
also make adding-in the science alert infeasible. To ensure 
the quick handling of science alerts, alerts have an 
expiration time. If the planner cannot add the science alert’s 
activities into the plan within this time limit, the alert is 
removed from the list of potential goals. The continuous 
optimization cycle is then allowed to work on other types of 
plan improvement.  
 
Previously, all science alerts kept the rover in the same 
physical location, only turning to face the new target. The 
planner can now change the planned path and plan for the 
rover to drive closer to the new target to better 
accommodate the data collection at the new goal. These 
drive-to science alerts introduce new problems, including 
where to insert them into the planned path, since the current 
time might not be the best position for them.  They are 
inserted into their most optimal ordering based on shortest 
path distance, in most cases.  If the new goal is close 
enough to an already scheduled goal, the same location is 
used for both goals, and the higher priority goal will be 
achieved first.  
 
Executive 

To provide executive capabilities in OASIS, we are using 
the Task Description Language (TDL) [8] executive. TDL 
expands abstract tasks into lower-level commands, executes 
the commands, and monitors their execution. It also 
provides direct support for exception handling and fine-

grained synchronization of subtasks. The TDL model also 
contains information about the rover and its environment. 
This includes constraint information, such as what 
preconditions must be true for an activity to begin 
execution, ways to decompose activities into commands 
based on current state, and exception handlers for some 
situations. 

The planner maintains the scheduled plan activities and 
when their start time falls within a certain time window, 
sends them to the executive for execution. The executive 
receives activities from the planner and translates them into 
the appropriate rover commands, often breaking up one 
activity into several smaller tasks which will be monitored 
for progress and completion.  The executive receives 
command status updates as well as state and resource 
information and can attempt to resolve local problems with 
smaller tasks, but will notify the planner when the task 
cannot be accomplished and a global, planner-level fix is 
required. Updates on activities, states and resources are also 
relayed to the planner since they may cause a need for 
further plan adjustment.  The idea of separate control allows 
the planner to work on optimizing the future state of the 
plan while the executive monitors the progress of the 
current state [9, 10]. 
 
Path Planning  

To provide spatial reasoning capabilities to CASPER and 
TDL, we are using a global path-planning module, which 
provides rover route information to both the planner and the 
executive based on a map of the rover’s surrounding 
environment.  This module is intended to give a global 
perspective of the rover’s anticipated path as opposed to the 
local perspective that would be considered by obstacle 
avoidance software. We are assuming that for most rover 
operations some global map information would be available 
through orbital or descent imagery, or from panoramic 
imagery generated onboard the rover itself.  We are also 
assuming this map information may be incomplete and 
certain terrain features and/or obstacles may be missing. 

The path planner is queried for two main pieces of 
information. The first piece is estimated distances between 
science targets or other designated traverse waypoints. The 
second piece is a list of intermediate-waypoint coordinates 
that can be used to direct the rover’s traverse to a particular 
target.  Path-distance information is used by the planner and 
executive to estimate duration and power required for rover 
traverses between targets.  Intermediate waypoints are used 
to track the rover’s progress during a traverse. To provide 
path planning information to our system, we are currently 
using the D* (Dynamic A*) path planner, which produces 
paths in partially known or changing environments using an 
efficient and optimal algorithm [11]. 
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Functional Layer 

In order to interact with low-level rover hardware and 
necessary control software, the planning and executive 
components of OASIS are integrated with the Coupled 
Layered Architecture for Robotic Autonomy (CLARAty) 
[12], which is being developed at JPL in response to the 
need for a robotic control architecture that can support 
future mission autonomy requirements. CLARAty provides 
a large range of basic robotic functionality and simplifies 
the integration of new technologies on different robotic 
platforms. For this work CLARAty has provided software 
for obstacle avoidance, navigation, vision, locomotion, and 
rover pose estimation. Through CLARAty, OASIS has been 
tested with several JPL rover platforms, including Rocky 8, 
and FIDO. 

6. SYSTEM TESTING 

To evaluate our system we performed a series of tests both 
in simulation and using rover hardware in the JPL Mars 
Yard. These tests covered a wide range of scenarios that 
included the handling of multiple, prioritized science targets 
and many different opportunistic science events as well as 
items such as limited time and resources, resource usage 
uncertainty causing under or oversubscriptions of power 
and memory, large variations in traverse time, temporally 
constrained science goals, and unexpected obstacles 
blocking the rover’s path.  
 
Our testing scenarios typically consisted of a random 
number of science targets specified at certain locations. A 
map was used that would represent a sample mission-site 
location where data would be gathered using multiple 
instruments at a number of locations. Figure 5 shows a 
sample scenario that was run as part of these tests. This 
particular map is of the JPL Mars Yard. The pre-specified 
science targets (shown in Figure 5 as the larger circles) 
represented targets that would be communicated by 
scientists on Earth. These targets were typically prioritized 
and for most scenarios, constraints on time, power or 
memory would limit the number of science targets that 
could be handled. A large focus of these tests was to 
improve system robustness and flexibility in a realistic 
environment. Towards that goal we used a variety of target 
locations and consistently selected new science targets 
and/or new science target combinations that had not been 
previously tested. 
 
A primary scenario element was dynamically identifying 
and handling opportunistic science events. For these tests, 
we concentrated on a particular type of event per scenario, 
which was either finding rocks with a high albedo 
measurement (i.e., light or white-colored rocks), or finding 
rocks with a high eccentricity value combined with a 
medium albedo (i.e., grey, elongated rocks). These settings 
were an example of using the data analysis algorithm to 

generate science alerts based on a target signature, where a 
particular terrain signature is identified as having a high 
interest level. If rocks were identified in hazard camera 
imagery that had at or above a certain interest score, then a 
science alert was created and sent to the planner. Science 
alerts would typically come in during rover traverses to new 
locations, but it was also possible for them to come in while 
the rover was at a science target location due to a small lag 
caused by image processing time. If a science alert was 
detected, the planner attempted to modify the plan so an 
additional image of the rock of interest would be acquired. 
A sample image that was taken in response to a high albedo 
measurement science alert was shown previously in Figure 
4. 
 
Other important scenario elements included adding or 
deleting ground-specified science targets based on resource 
under or over-subscriptions. For instance, in some tests, the 
rover covered distances more quickly than expected and the 
planner was able to add in additional science targets that 
could not be fit into the original plan. Conversely, in other 
tests, the rover used more power than expected during 
traverses or science activities, which often caused a power 
over-subscription, where enough power was not being 
preserved for later plan activities. The planner resolved this 
situation by deleting some lower priority science targets. 
Unexpected energy drops during a traverse could also be 
handled by the executive, which detects the shortfall and 
stops the current traverse if there is not enough energy to 
complete it. In all cases, the planning and execution system 
attempts to preserve as many high priority science targets as 

Figure 5: Sample scenario shown in the Grid 
Visualization Tool (GriViT). Green lines show the 
planned path of the rover.  Blue lines show the real 
path, and pink lines show the path that is currently 
executing. 
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possible while still adhering to required resource and state 
constraints. 

 
Testing in Simulation 

Since testing with rover hardware can be an expensive and 
time-intensive process, we ran a large number of tests with 
the planning and execution system in simulation using a 
relatively simple simulator. This simulator could execute 
rover sequence commands and simulate their effects at a 
coarse level of granularity. For instance, the simulator 
handled items such as rover position changes and energy 
usage over straight-line movements, but did not simulate 
obstacle avoidance or rover kinematics. Another capability 
that was used in simulation was triggering multiple science 
alerts at pre-set or random times. This capability helped in 
evaluating the planner’s capacity to correctly handle 
different opportunistic science scenarios. 
 
To easily run and evaluate large numbers of tests, we also 
invested in a testing infrastructure, which allowed tests to be 
run offline and statistics automatically gathered, including 
information such as number of plan conflicts found and 
resolved, plan generation and re-planning time, number of 
goals satisfied, overall plan traverse distance and plan 
optimization scores. This testing infrastructure also enabled 
the automatic creation of mpeg movies that showed plan 
changes using snapshots of a plan visualization tool. This 
tool showed the results of plan generation and execution on 
an overhead map of the world, and could be used for both

simulated and hardware testing. An example plan snapshot 
displayed by this tool was shown in Figure 5. Planning and 
execution results were evaluated by examining gathered 
statistics and by viewing created mpegs to flag incorrect or 
non-optimal behavior. 
 

Testing with Rover Hardware 

In addition to testing in simulation, a large number of tests 
were run in the JPL Mars Yard (shown in Figure 6) using 
different rover hardware platforms. For the past year the 
FIDO rover (shown in Figure 7) was used for the majority 
of tests. FIDO is a terrestrial, advanced technology 
prototype rover similar to the Mars Exploration Rover 
(MER) rovers on the surface of Mars. FIDO’s mobility sub-
system consists of a six-wheel rocker-bogie suspension 
capable of traversing over obstacles up to 30 cm in height. 
All demonstrated software has been designed to run 
onboard the rover, however during testing, only functional-
level CLARAty modules, such as navigation and vision, and 
the OASIS rock-finding software were run onboard FIDO. 
Other modules, including the planning and execution 
module and the analysis module, were run on offboard 
workstations that communicated with the rovers using 
Wireless Ethernet, since a port of these components to the 
onboard operating system (VxWorks) was not complete. 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 6: The JPL Mars Yard with terrain of various difficulties. 
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Tests in the Mars Yard have consisted of 20-50 meter runs 
over a 100 square meter area with many obstacles that cause 
deviations in the rover’s path. A number of successful tests 
have been run on the rovers with random combinations of 
science targets, including science targets selected by 
observing MER scientists. Science measurements using 
rover hardware were always images, since other instruments 
were not readily available (e.g., spectrometer). However 
different types of measurements were included when testing 
in simulation. 
 
Testing and Demonstration Results 

Testing in simulation and with real hardware provided 
important steps in the evaluation of our system. Many bugs 
were caught early through simulated testing, but others did 
not surface until significant runs had been performed on 
rover hardware. Furthermore, running with hardware often 
allowed a perspective that was difficult to attain through 
simulated testing. For example, the accuracy of rover turns 
towards new science opportunities was much easier to judge 
when running with hardware. 
 
Most recently, we have performed tests in the newly 
expanded Mars Yard. Figure 8 demonstrates the OASIS 
system identifying highly eccentric rocks with medium 
albedo. For this test, FIDO is placed at one end of the rock 
field (8.a.) and begins a long-range traverse to a science 
goal 15 meters north of the rover’s current position. As 
FIDO traverses the terrain, rocks within the navigation 
images are identified and classified (8.b., 8.c., and 8.d.). 
Feature extraction detects a grey, elongated rock from the 
set of rocks in one image and sends an alert to the planner. 
The planner accommodates the alert by stopping the rover 
and inserting a new traverse activity and a new image 
activity to satisfy this opportunistic science goal. The rover 
drives closer to the discovered rock (8.e.), and captures an 
additional image (8.f.). FIDO then continues navigating the 
terrain toward its primary goal, continuously searching for 
pre-determined, scientifically interesting rocks, while the 
planner and executive manages the rover’s current state. 

7. RELATED WORK 

The Autonomous Sciencecraft Experiment (ASE) [13] has 
demonstrated the capability of planning and data analysis 
systems to autonomously coordinate behavior of the EO-1 
Earth orbiting satellite. ASE can also detect and respond to 
new science events, however it uses different detection and 
analysis algorithms.  The Remote Agent Experiment (RAX) 
[14] was flown on the NASA Deep Space One (DS1) 
mission. It demonstrated the ability of an AI planning, 
execution and diagnosis system to respond to high-level 
spacecraft goals by generating and executing plans onboard 
the spacecraft. However, RAX did not incorporate data 
analysis to identify new science targets and used a batch 
approach to planning. Furthermore, since RAX and ASE 
were applied to spacecraft, neither handle issues associated 
with the uncertainty of surface navigation. 

A number of planning and executive systems have been 
successfully used for robotic applications and have 
similarities to the approach we describe in this paper.  Most 
of these approaches have used some combination of 
planning and execution, however they differ in not only the 
behavior of these individual components, but also in how 
these systems interface with each other and with other 
system modules.   

Another approach directed towards rover command 
generation uses a Contingent Planner/Scheduler (CPS) that 
was developed to schedule rover-scientific operations using 
a Contingent Rover Language (CRL) [15]. CRL allows both 
temporal flexibility and contingency branches in rover 
command sequences. Contingent sequences are produced by 
the CPS planner and then are interpreted by an executive, 
which executes the final plan by choosing sequence 
branches based on current rover conditions. In this 
approach, only the executive is onboard the rover; planning 
is intended to be a ground-based operation. Since only a 
limited number of contingencies can be anticipated, our 
approach provides more onboard flexibility to new 
situations. In the CRL approach, if a situation occurs 
onboard for which there is not a pre-planned contingency,  

 

   
Figure 7: Rocky 8 rover (left), FIDO rover (middle), Rocky 7 rover (right) 
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e. FIDO navigates to and performs an image at the identified 
target rock 

a. FIDO rover at start of plan. 
b. A stereo image captured during a navigation traverse. 

c. The same stereo image with rocks outlined using the 
OASIS rock detection algorithm. 

d. The OASIS feature extraction identifies an elongated, 
grey rock. 

f. The resultant data sample request (DSR) image. 

Figure 8: The FIDO rover searches for rocks of medium albedo and highly eccentric shape. 
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the rover must be halted to wait for communication with 
ground.   

Other similar approaches include Atlantis [16], 3T [17], and 
a robotic control architecture developed at the LAAS-CNRS 
lab [18] which all use a deliberative planner and an 
executive (or sequencing component) on top of a set of 
reactive controllers. These approaches have distinctly 
separate planning and execution techniques, have not 
closely interacted with navigation software used for rover 
missions, and are not integrated with onboard analysis 
system for dynamically identifying new goals.   

8. SUMMARY  

Onboard autonomy and science data analysis will have a 
significant impact on future landed missions.  Two elements 
of the OASIS system are being considered for use on 
current and future rover missions.  The OASIS system is 
continuing to expand its capabilities for opportunistic 
science by increased functionality in the feature extraction, 
data analysis and planning and scheduling components.  For 
acceptance of an autonomous system, thorough testing of a 
wide range of possible scenarios is necessary.  We have 
found that testing in simulation can have extensive benefits. 
 Although the behavior of the rover in the field is not 
thoroughly modeled, many more scenarios can be explored 
in simulation.  The system can be exercised more 
extensively in a number of ways that cannot be done with 
the full hardware system.  Simulation testing led to the 
identification of several issues that were then addressed 
before hardware testing, making the hardware testing more 
effective. 
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