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Abstract—Differential Evolution is a simple, but effective
approach for numerical optimization. Since the search efficiency
of DE depends significantly on its control parameter settings,
there has been much recent work on developing self-adaptive
mechanisms for DE. We propose a new, parameter adaptation
technique for DE which uses a historical memory of successful
control parameter settings to guide the selection of future
control parameter values. The proposed method is evaluated
by comparison on 28 problems from the CEC2013 benchmark
set, as well as CEC2005 benchmarks and the set of 13 classical
benchmark problems. The experimental results show that a DE
using our success-history based parameter adaptation method is
competitive with the state-of-the-art DE algorithms.

I. INTRODUCTION

Differential Evolution (DE) is a stochastic search method,
that was primarily designed for numerical optimization prob-
lems [1]. Despite of its relative simplicity, DE has been
shown to be competitive with other more complex optimization
algorithms, and has been applied to many practical problems
[2].

As with other evolutionary algorithms, the search per-
formance of DE algorithms depends on control parameter
settings. A standard DE has three main control parameters,
which are the population size, scaling factor F , and crossover
rate CR. However, it is well-known that the optimal settings
of these parameters are problem-dependent. Therefore, when
applying DE to a real-world problem, it is often necessary
to tune the control parameters in order to obtain the desired
results. Since this is a significant problem in practice, self-
adaptive mechanisms for adjusting the control parameters on-
line during the search process have been studied by many
researchers [3], [2].

JADE [4] is a well-known, effective DE variant which
employs a control parameter adaptation mechanism. In addi-
tion to on-line, parameter adaptation, JADE also uses a novel
mutation strategy called current-to-pbest/1 and an external
archive for storing previously generated individuals. Instead
of a static crossover rate CR and scaling factor F , JADE has
two corresponding, adaptive variables, µCR, µF . The crossover
rate and scaling factor associated with each individual are
generated according to a normal/Cauchy distribution with
means µCR, µF . At the end of each generation, the values
of µCR, µF are updated according to the CR,F pair that
resulted in the generation of the successful trial vector in
that generation. As the search progresses, µCR, µF should
gradually approach the optimal values for the given problem.

In this paper, we propose Success-History based Adaptive
DE (SHADE), an enhancement to JADE which uses a history

based parameter adaptation scheme. Instead of generating new
control parameter settings based on some distribution around
a single pair of parameters µCR, µF , we use a historical
memory MCR,MF which stores a sets of CR,F values that
have performed well in the past, and generate new CR,F
pairs by directly sampling the parameter space close to one
of these stored pairs. We show experimentally that SHADE
outperforms previous DE variants, including JADE, CoDE [5],
EPSDE [6], and dynNP-jDE [7].

The rest of the paper is organized as follows. In Section II,
we review the basic DE algorithm. The recent work on adaptive
DE variants is described in Section III. Section IV reviews
JADE, the adaptive DE which is extended by this work.
We propose SHADE, a new algorithm using a history based
adaptation mechanism in Section V. Section VI presents an
empirical evaluation of SHADE to several state-of-the-art DE
algorithms. The primary comparison is based on the CEC2013
benchmarks, and we also perform several comparisons on the
older CEC2005 benchmarks as well as a widely used set of
classical functions. We also evaluate the effect of the size of
the historical memory used by SHADE. Section VII concludes
the paper with a discussion and directions for future work.

II. DIFFERENTIAL EVOLUTION

This section briefly describes DE [1]. Similar to other
evolutionary algorithms for numerical optimization, a DE
population is represented as a set of real parameter vectors
xi = (x1, ..., xD), i = 1, ..., N , where D is the dimensionality
of the target problem, and N is the population size. At the
beginning of the search, the individual vectors in population
are initialized randomly. Then, a process of trial vector genera-
tion and selection are repeated until some termination criterion
is encountered. In each generation G, a mutant vector vi,G

is generated from an existing population member xi,G by
applying some mutation strategy. The following are example
of mutation strategies.

• rand/1

vi,G = xr1,G + F · (xr2,G − xr3,G) (1)

• rand/2

vi,G = xr1,G + F · (xr2,G − xr3,G)

+ F · (xr4,G − xr5,G) (2)

• best/1

vi,G = xbest,G + F · (xr1,G − xr2,G) (3)



• current-to-best/1

vi,G = xi,G + F · (xbest,G − xi,G)

+ F · (xr1,G − xr2,G) (4)

The indices r1, ..., r5 are randomly selected from [1, N ] such
that they differ from each other as well as i. xbest,G is the
best individual in population in generation G. The parameter
F ∈ [0, 1] controls the magnitude of the differential mutation
operator.

After generating the mutant vector vi,G, it is crossed with
the parent xi,G in order to generate trial vector ui,G. Binomial
Crossover, the most commonly used crossover operator in DE,
is implemented as follows:

uj,i,G =

{
vj,i,G if rand[0, 1) ≤ CR or j = jrand
xj,i,G otherwise

(5)

rand[0, 1) denotes a uniformly selected random number from
[0, 1), and jrand is a decision variable index which is uniformly
randomly selected from [1, D]. CR ∈ [0, 1] is the crossover
rate.

After all of the trial vectors ui,G, 0 ≤ i ≤ N have been
generated, a selection process determines the survivors for
the next generation. The selection operator in standard DE
compares each individual xi,G against its corresponding trial
vector ui,G, keeping the better vector in the population.

xi,G+1 =

{
ui,G if f(ui,G) ≤ f(xi,G)
xi,G otherwise

(6)

III. RELATED WORK

The search efficiency of DE depends largely on the muta-
tion strategy, as well as the control parameters N , F , CR, and
many previous researchers have shown that optimal settings
for these parameters are domain-dependent (c.f. [1], [8], [9],
[10]). Thus, there has been much recent work which seeks to
automate the selection of the mutation strategy, as well as the
control parameter values [3], [2].

In this section, we briefly review several, state-of-the-art
variants of DE which have been shown to perform relatively
well. In our descriptions below, we say that a generation of trial
vector is successful if a replacement occurs in Eq. (6), i.e., the
trial vector ui,G is more fit than the parent xi,G. Otherwise,
we say that it is a failure.

jDE [11] assigns a different set of parameter values Fi

and CRi to each xi, which is used for generating the trial
vectors. Initially, the parameters for all individuals i are set
to Fi = 0.5, CRi = 0.9. The control parameter values of the
trial vectors are inherited from their parents. However, each
parameter is randomly modified (within a pre-specified range)
with some probability, and modified parameters are kept for the
next generation only when a trial is successful. An extension
of jDE which periodically reduces the population size by half
in order to focus the search has been proposed [7].

SaDE [12] uses a memory of past search behavior in order
to adapt the mutation strategy and control parameter values.
First, 4 strategies are stored in a strategy pool, and during the
search, in each generation, one of these strategies is selected
probabilistically for each individual.

For each mutation strategy k (k = 1, ...,K), the number
of successes and failures is recorded. The randomized strategy
selection is biased to favor strategies with a higher number of
success (i.e., strategies that are adapted to the given problem).
In each generation, the value of F for each individual xi is
randomly assigned by the normal distribution randn(0.5, 0.3),
and does not adapt during the search. In contrast, successful
CR values for each mutation strategy k are stored in corre-
sponding memory k, and new values for CR are generated
by sampling a normal distribution randn(CRmk, 0.1), where
CRmk is the median CR value in memory for strategy k.

Although the memory mechanism of SaDE is similar to
the historical memory mechanism used in SHADE, we do not
experimentally compare SHADE to SaDE because we compare
SHADE to CoDE, EPSDE, and JADE, which have already
been shown to outperform SaDE [4], [6], [5].

EPSDE [6] uses 3 separate pools, one each for the mutation
strategy, F , and CR. The mutation strategy pool includes
rand/1/bin, best/2/bin, current-to-rand/1. The F pool stores the
values between [0.4, 0.9] in 0.1 increments, and the CR pool
includes the values in [0.1, 0.9] in 0.1 increments. At the begin-
ning of the search, each individual xi,G is randomly assigned
values for the mutation strategy, F , and CR from each pool.
During search, successful parameter sets are inherited by the
individual in the next generation, xi,G+1. Parameter sets that
fail are reinitialized.

Unlike the other self-adaptive DEs described in this section,
CoDE [5], another recent DE variant, does not adapt its strat-
egy and parameter settings, but randomly selects parameters
from a predefined set. More specifically, at each generation,
CoDE randomly combines 3 hand-selected mutation strategies
(rand/1/bin, rand/2/bin, current-to-rand/1) with 3 hand-selected
[F,CR] pairs ([1.0, 0.1], [1.0, 0.9], [0.8, 0.2]), when generating
3 trial vectors for each individual in the population.

IV. REVIEW OF JADE [4]

In this section, we describe JADE [4], which is the basis for
our SHADE algorithm. Its main features are a new mutation
strategy (current-to-pbest/1), an external archive, and adaptive
control of the F , CR parameter values. Below, we describe
each of these in detail and survey previous extensions to JADE.

A. current-to-pbest/1 mutation strategy

Since the current-to-best/1 strategy Eq. (4) directs the
generation of mutant vectors towards the best member of
the population, this greedy strategy converges quickly to a
local optimum, and performs well on unimodal optimization
problems. However, it has been shown that on multimodal
problems, this strategy often leads to premature convergence
and poor performance [10].

The mutation strategy used by JADE current-to-pbest/1 is
a variant of the current-to-best/1 strategy where the greediness
is adjustable using a parameter p.

• current-to-pbest/1

vi,G = xi,G + Fi · (xpbest,G − xi,G)

+ Fi · (xr1,G − xr2,G) (7)



In Eq. (7), the individual xpbest,G is randomly selected from
the top N ×p (p ∈ [0, 1]) members in the G-th generation. Fi

is the F parameter used by individual xi. The greediness of
current-to-pbest/1 depends on the control parameter p in order
to balance exploitation and exploration (small p behaves more
greedily).

B. External Archive

In order to to maintain diversity, JADE uses an optional,
external archive. Parent vectors xi,G which were worse than
the trial vectors ui,G (and are therefore not selected for
survival in the standard DE, Eq. 6) are preserved. When the
archive is used, xr2,G in Eq. (7) is selected from P ∪A, the
union of the population P and the archive A. The size of
the archive is set to the same as that of the population, i.e.,
|A| = |P |. Whenever the size of the archive exceeds |A|,
randomly selected elements are deleted to make space for the
newly inserted elements.

C. Parameter Adaptation

Each individual xi is associated with its own CRi and Fi

parameters and generates trial vectors according to these val-
ues. These parameters are set probabilistically at the beginning
of each generation according to adaptive control parameters
µCR, µF according to the following equations:

CRi = randni(µCR, 0.1) (8)
Fi = randci(µF , 0.1) (9)

Here, randni(µ, σ
2), randci(µ, σ

2) are values selected ran-
domly from normal and Cauchy distributions with mean µ
and variance σ2. In case a value for CRi outside of [0, 1] is
generated, it is replaced by the limit value (0 or 1) closest to
the generated value. When Fi > 1, Fi is truncated to 1, and
when Fi ≤ 0, Eq. (9) is repeatedly applied to try to generate
a valid value. At the beginning of the search, µCR and µF

are both initialized to 0.5, and adapted during the search as
follows.

In each generation, in Eq. (6), CRi and Fi values that
succeed in generating a trial vector ui,G which is better than
the parent individual xi,G are recorded as SCR, SF , and at the
end of the generation, µCR, µF are updated as:

µCR = (1− c) · µCR + c ·meanA(SCR) (10)
µF = (1− c) · µF + c ·meanL(SF ) (11)

Here, the meta-level control parameter c is a learning rate
(Zhang and Sanderson suggest a value of c = 0.1). meanA(·)
is an arithmetic mean, and meanL(·) is a Lehmer mean which
is is computed as:

meanL(SF ) =

∑
F∈SF

F 2∑
F∈SF

F
(12)

D. Previous Extensions to JADE

Because JADE’s update formula for µCR Eq. (10) uses an
arithmetic mean, this biases µCR to converge to a small value.

To prevent this bias, Peng et al proposed replacing the second
term of Eq. (10) with the following weighted mean [13] :

meanWA(SCR) =

|SCR|∑
k=1

wk · SCR,k (13)

wk =
∆fk∑|SCR|

k=1 ∆fk
(14)

where ∆fk = |f(uk,G) − f(xk,G)|. In the same paper, they
also proposed a restart strategy for JADE [13].

Gong et al proposed an approach which adaptively selects
among combines four configurations of JADE: the current-
to-pbest/1 mutation strategy with/without the external archive,
and rand-to-p-best/1 mutation strategy [14] with/without the
external archive [15].

In order to solve very high dimensional (D = 1000) prob-
lems, Yang et al propose a co-evolutionary extension to JADE
[16]. JADE has also been adapted and applied to combinatorial
optimization problems, as well as multi-objective optimization
[17], [18].

V. SUCCESS-HISTORY BASED ADAPTIVE DE

As described above, in each generation, JADE continuously
updates µCR, µF such that they approach SCR, SF , which are
the mean values for CR and F that have been successful
in previous generations. While it is implicitly assumed that
SCR and SF only includes parameter values which perform
well on the given problem, due to the probabilistic nature of
DE, it is possible that poor settings for CR and F are also
included in SCR and SF . If so, Equations (10) and (11) can
cause µCR, µF to move towards undesirable values, resulting
in degraded search performance.

In order to improve upon the robustness of JADE, we
propose Success-History based Adaptive DE (SHADE), an
improved version of JADE which uses a different param-
eter adaptation mechanism based on a historical record of
successful parameter settings. In SHADE, the mean values
of SCR, SF for each generation are stored in a historical
memory MCR,MF . In contrast to JADE, which uses a single
pair (µCR, µF ) to guide parameter adaptation, SHADE main-
tains a diverse set of parameters to guide control parameter
adaptation as search progresses. Thus, even if SCR, SF for
some particular generation contains a poor set of values, the
parameters stored in memory from previous generations can
not be directly, negatively impacted. This should result in
SHADE being more robust than JADE.

In this section, we first describe the history based param-
eter adaptation strategy used by SHADE (Section V-A). We
then describe a randomized approach to setting the control
parameter value p in the current-to-pbest/1 mutation strategy
used by SHADE in Section V-B. Section V-C describes the
overall SHADE algorithm, and Section V-D compares SHADE
to previous work.

A. History Based Parameter Adaptation

As shown in Figure 1, SHADE maintains a historical
memory with H entries for both of the DE control parameters



Index 1 2 ... H − 1 H

MCR MCR,1 MCR,2 ... MCR,H−1 MCR,H

MF MF,1 MF,2 ... MF,H−1 MF,H

Fig. 1: The historical memory MCR,MF

CR and F , MCR,MF . In the beginning, the contents of
MCR,i,MF,i(i = 1, ..., H) are all initialized to 0.5.

In each generation, the control parameters CRi and Fi

used by each individual xi are generated by first selecting an
index ri randomly from [1,H], and then applying the equations
below:

CRi = randni(MCR,ri , 0.1) (15)
Fi = randci(MF,ri , 0.1) (16)

If the values generated for CRi, Fi are outside the range
[0, 1], they are adjusted/regenerated according to the procedure
described above for JADE (Section IV-C).

As with JADE, the CRi and Fi values used by successful
individuals are recorded in SCR and SF , and at the end of the
generation, the contents of memory are updated as follows:

MCR,k,G+1 =

{
meanWA(SCR) if SCR 6= ∅
MCR,k,G otherwise

(17)

MF,k,G+1 =

{
meanWL(SF ) if SF 6= ∅
MF,k,G otherwise

(18)

An index k (1 ≤ k ≤ H) determines the position in
the memory to update. At the beginning of the search k is
initialized to 1. k is incremented whenever a new element is
inserted into the history. If k > H , k is set to 1. In generation
G, the k-th element in the memory is updated. In the update
equations (17) and (18), note that when all individuals in
generation G fail to generate a trial vector which is better than
the parent, i.e., SCR = SF = ∅, the memory is not updated.

Also, the weighted mean meanWA(SCR) is computed
according to Equation (13) by Peng et al [13]. The weighted
Lehmer mean meanWL(SF ) is computed using the formula
below, and as with meanWA(SCR), the amount of improve-
ment is used in order to influence the parameter adaptation.

meanWL(SF ) =

∑|SF |
k=1 wk · S2

F,k∑|SF |
k=1 wk · SF,k

(19)

B. Random generation of p

Although JADE adapts the DE control parameters CR and
F , the parameter p, which is used to adjust the greediness
of the current-to-pbest/1 mutation strategy, is static and set
manually. In SHADE, each individual xi has an associated pi,
which is set according to the equation by generation:

pi = rand[pmin, 0.2] (20)

where pmin is set such that when the pbest individual [see
IV-A] is selected, at least 2 individuals are selected, i.e.,
pmin = 2/N . The maximum value 0.2 in Eq. (20) is the
maximum value of the range for p suggested by Zhang and
Sanderson [4].

Algorithm 1: SHADE
// Initialization phase

1 G = 0;
2 Initialize population P 0 = (x1,0, ...,xN,0) randomly;
3 Set all values in MCR, MF to 0.5;
4 Archive A = ∅;
5 Index counter k = 1;
// Main loop

6 while The termination criteria are not met do
7 SCR = ∅, SF = ∅;
8 for i = 1 to N do
9 ri = Select from [1, H] randomly;

10 CRi,G = randni(MCR,ri , 0.1);
11 Fi,G = randci(MF,ri , 0.1);
12 pi,G = rand[pmin, 0.2];
13 Generate trial vector ui,G by current-to-pbest/1/bin;
14 end
15 for i = 1 to N do
16 if f(ui,G) ≤ f(xi,G) then
17 xi,G+1 = ui,G;
18 else
19 xi,G+1 = xi,G;
20 end
21 if f(ui,G) < f(xi,G) then
22 xi,G → A;
23 CRi,G → SCR, Fi,G → SF ;
24 end
25 end
26 Whenever the size of the archive exceeds |A|, randomly

selected individuals are deleted so that |A| ≤ |P |;
27 if SCR 6= ∅ and SF 6= ∅ then
28 Update MCR,k,MF,k based on SCR, SF ;
29 k ++;
30 If k > H , k is set to 1;
31 end
32 end

C. Overall implementation

Algorithm 1 shows the overall SHADE algorithm, in-
cluding the use of the external archive (as with JADE, the
external archive is optional). In each generation, the DE
control parameters F and CR are generated based on the
history based parameter adaptation (Section V-A), trial vectors
are generated, selection applied, and the historical memory
(MCR,MF ) is updated. This process is repeated until some
termination criterion is achieved.

Algorithm 1 is similar to the JADE algorithm. However,
note that in lines 21-24, the CRi and Fi parameters are
only updated when f(ui,G) < f(xi,G). This constraint is
necessary because the update equations are based on weighted
score differences, so when f(ui,G) and f(xi,G) are identical,
the weight becomes 0, resulting in inappropriate parameter
updates.

D. Relationship With Previous Work

This section clarifies the relationship between the historical
memory used by SHADE algorithm and related elements in
previous work. While JADE has a learning rate parameter
c which controls the rate of parameter adaptation, SHADE
does not have an explicit learning rate parameter – instead,
the memory size H plays a similar role. If H is small, then
recent parameter values are frequently used (because older
values are rapidly overwritten due to the limited memory
size), leading to rapid convergence of the control parameter



TABLE I: Comparison of SHADE with state-of-the-art DE algorithms on the CEC2013 benchmarks. For all problems, the dimensionality
D = 30, and the maximum number of objective function evaluations is D × 10, 000 = 300, 000. All results are the means of 51 runs.

F
SHADE

Mean (Std Dev)
CoDE

Mean (Std Dev)
EPSDE

Mean (Std Dev)
JADE

Mean (Std Dev)
dynNP-jDE

Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F2 9.00e+03 (7.47e+03) 9.78e+04 (4.81e+04)− 1.37e+06 (5.23e+06)− 7.67e+03 (5.66e+03)≈ 9.52e+04 (4.09e+04)−
F3 4.02e+01 (2.13e+02) 1.08e+06 (3.03e+06)− 1.75e+08 (5.39e+08)− 4.71e+05 (2.35e+06)− 1.71e+06 (2.54e+06)−
F4 1.92e-04 (3.01e-04) 8.18e-02 (1.09e-01)− 8.08e+03 (2.56e+04)− 6.09e+03 (1.33e+04)− 4.76e+01 (4.75e+01)−
F5 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F6 5.96e-01 (3.73e+00) 4.16e+00 (9.00e+00)− 9.27e+00 (1.33e+00)− 2.07e+00 (7.17e+00)≈ 1.19e+01 (1.66e+00)−
F7 4.60e+00 (5.39e+00) 9.32e+00 (6.34e+00)− 5.88e+01 (4.29e+01)− 3.16e+00 (4.13e+00)≈ 2.62e+00 (1.59e+00)≈
F8 2.07e+01 (1.76e-01) 2.08e+01 (1.18e-01)≈ 2.09e+01 (5.32e-02)− 2.09e+01 (4.93e-02)− 2.10e+01 (3.98e-02)−
F9 2.75e+01 (1.77e+00) 1.45e+01 (2.90e+00)+ 3.50e+01 (4.21e+00)− 2.65e+01 (1.96e+00)+ 2.20e+01 (5.12e+00)+

F10 7.69e-02 (3.58e-02) 2.71e-02 (1.50e-02)+ 1.02e-01 (5.65e-02)− 4.04e-02 (2.37e-02)+ 3.63e-02 (2.34e-02)+

F11 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 1.95e-02 (1.39e-01)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F12 2.30e+01 (3.73e+00) 3.98e+01 (1.21e+01)− 4.94e+01 (9.28e+00)− 2.29e+01 (5.45e+00)≈ 4.07e+01 (8.81e+00)−
F13 5.03e+01 (1.34e+01) 8.04e+01 (2.74e+01)− 7.68e+01 (1.72e+01)− 4.67e+01 (1.37e+01)≈ 7.10e+01 (1.72e+01)−
F14 3.18e-02 (2.33e-02) 3.60e+00 (4.09e+00)− 3.99e-01 (6.00e-01)− 2.86e-02 (2.53e-02)≈ 9.39e-03 (1.40e-02)+
F15 3.22e+03 (2.64e+02) 3.36e+03 (5.31e+02)− 6.75e+03 (7.60e+02)− 3.24e+03 (3.17e+02)≈ 4.39e+03 (4.72e+02)−
F16 9.13e-01 (1.85e-01) 3.38e-01 (2.03e-01)+ 2.48e+00 (2.88e-01)− 1.84e+00 (6.27e-01)− 2.32e+00 (2.83e-01)−
F17 3.04e+01 (3.83e-14) 3.04e+01 (1.17e-02)− 3.04e+01 (2.51e-02)− 3.04e+01 (1.95e-14)− 3.04e+01 (1.78e-03)≈
F18 7.25e+01 (5.58e+00) 6.69e+01 (9.23e+00)+ 1.37e+02 (1.12e+01)− 7.76e+01 (5.91e+00)− 1.35e+02 (1.24e+01)−
F19 1.36e+00 (1.20e-01) 1.61e+00 (3.58e-01)− 1.84e+00 (2.00e-01)− 1.44e+00 (8.71e-02)− 1.27e+00 (1.09e-01)+
F20 1.05e+01 (6.04e-01) 1.06e+01 (6.69e-01)≈ 1.30e+01 (6.33e-01)− 1.04e+01 (5.82e-01)≈ 1.13e+01 (4.14e-01)−
F21 3.09e+02 (5.65e+01) 3.02e+02 (9.02e+01)≈ 3.05e+02 (8.06e+01)≈ 3.04e+02 (6.68e+01)≈ 2.94e+02 (8.29e+01)≈
F22 9.81e+01 (2.52e+01) 1.17e+02 (9.96e+00)− 3.09e+02 (1.12e+02)− 9.39e+01 (3.08e+01)≈ 1.03e+02 (2.57e+01)−
F23 3.51e+03 (4.11e+02) 3.56e+03 (6.12e+02)≈ 6.74e+03 (8.20e+02)− 3.36e+03 (4.01e+02)≈ 4.36e+03 (4.61e+02)−
F24 2.05e+02 (5.29e+00) 2.21e+02 (9.28e+00)− 2.91e+02 (7.08e+00)− 2.17e+02 (1.57e+01)− 2.04e+02 (4.22e+00)≈
F25 2.59e+02 (1.96e+01) 2.57e+02 (6.55e+00)≈ 2.99e+02 (3.29e+00)− 2.74e+02 (1.06e+01)− 2.55e+02 (7.91e+00)≈
F26 2.02e+02 (1.48e+01) 2.18e+02 (4.48e+01)− 3.56e+02 (6.49e+01)− 2.15e+02 (4.11e+01)≈ 2.00e+02 (3.06e-03)+
F27 3.88e+02 (1.09e+02) 6.20e+02 (1.01e+02)− 1.21e+03 (7.42e+01)− 6.70e+02 (2.40e+02)− 3.90e+02 (9.12e+01)≈
F28 3.00e+02 (0.00e+00) 3.00e+02 (0.00e+00)≈ 3.00e+02 (0.00e+00)≈ 3.00e+02 (0.00e+00)≈ 3.00e+02 (0.00e+00)≈

+ 4 0 2 5

- 15 23 10 13

≈ 9 5 16 10

values. On the other hand, as H increases, the rate of control
parameter convergence is expected to slow down because older
parameters will continue to have influence for a longer time.

The use of historical memory in SHADE is similar to
that of SaDE (Section III), which uses a similar memory
mechanism in order to adapt the CR parameter and the
mutation strategy selection [12]. In SaDE, CRi, the CR value
for the ith individual is randomly generated from a normal
distribution randni(CRmk, 0.1), whose mean is the median
CR value in memory for strategy k. In contrast, in SHADE,
(1) the actual parameter values for CR, and F that were
used by individuals are not directly stored in memory as in
SaDE – instead, only the means of the successful parameter
sets SCR, SF for each generation are stored, and (2) rather
than generating new control parameter values based on a
random distribution around the median memory elements as
SaDE does, SHADE randomly selects a particular element
from memory, and generates a new parameter value from a
distribution based around that particular element.

VI. EXPERIMENTAL RESULTS

SHADE was evaluated on the CEC2013 benchmark prob-
lem set [19], as well as CEC2005 benchmarks [20] and the
set of 13 “classical” benchmark problems [21] that have been
frequently used in the literature. We compared SHADE to the
following, state-of-the-art DE algorithms:

• JADE [4],

• dynNP-jDE [7] (an improved version of jDE [11]),

• CoDE [5], and

• EPSDE [6]

For each algorithm, we used the control parameter values that
were suggested in the cited, original papers. SHADE used a
population size N = 100 and memory size H = N = 100
for this experiment (unless explicitly noted, all SHADE runs
in this paper used these parameters).

The Matlab source code for CoDE, EPSDE, and JADE
were downloaded from [22], the web site of Q. Zhang’s, one
of the authors of [5]. These were used for the experiments in
[5], and are based on code originally received from the original



authors of CoDE, EPSDE, and JADE. We minimally modified
these programs so that they would work with the CEC2013
benchmark codes.

SHADE and dynNP-jDE were implemented in C++. In
addition, for each dimension j, if the mutant vector element
vj,i,G is outside the boundaries [xmin

j , xmax
j ], we applied the

same correction performed in [4]:

vj,i,G =

{
(xmin

j + xj,i,G)/2 if vj,i,G < xmin
j

(xmax
j + xj,i,G)/2 if vj,i,G > xmax

j
(21)

A. Results on the CEC2013 benchmarks

We evaluated SHADE and the other DE variants on the
28 benchmark problems from the CEC2013 Special Session
on Real-Parameter Single Objective Optimization benchmark
suite. [19]. We use the CEC2013 benchmark problems be-
cause of a precision-related issue with earlier benchmarks
(CEC2005) which arose when comparing our C++ code for
SHADE and dynNP-jDE and the publicly available Matlab
code for CoDE, EPSDE and JADE that we downloaded from
[22]. Since the precisions achievable with these codes were
different, a completely fair comparison based on the complete
set of CEC2005 benchmarks was difficult (however, see below
in Section VI-B for comparisons on problems where precision-
related issues did not arise). Fortunately, the CEC2013 bench-
marks and rules were designed to overcome this issue.

Functions F1 ∼ F5 are unimodal, and , F6 ∼ F20

are multimodal. F21 ∼ F28 are composite functions which
combine multiple test problems into a complex landscape. See
[19] for details.

We performed our evaluation following the guidelines of
the CEC2013 benchmark competition [19]. For all of the
problems, the search space is [−100, 100]D. When the gap
between the values of the best solution found and the optimal
solution was 10−8 or smaller, the error (score) was treated as
0. For all of the problems the number of dimensions D = 30,
and the maximum number of objective function calls per
run was D × 10, 000 (i.e., 300,000). The number of runs
per problem was 51, and the average performance of these
runs was evaluated. Statistical significance testing was done
using the Wilcoxon rank-sum test with (significant threshold:
p < 0.05).

The results are shown in Table I. In the table, the mean and
standard deviation of the error (difference) between the best
fitness values found in each run and optimal value are shown.
The best result for each problem is shown in boldface. The
+,−,≈ indicate whether a given algorithm performed signif-
icantly better (+), significantly worse (−), or not significantly
different better or worse (≈) compared to SHADE according to
the Wilcoxon rank-sum test (significance threshold p < 0.05).

On the unimodal problems F1 ∼ F5 SHADE and JADE
exhibited the best performance. The good performance of
JADE on the unimodal functions is consistent with the previous
results of [5]. On the basic multimodal functions F6 ∼ F20,
SHADE performs relatively well, although there are several
problems where CoDE performed particularly well. On the
complex, composite functions F21 ∼ F28, the best performers
were dynNP-jDE (possibly due the its population size reduc-
tion strategy), followed by SHADE, JADE and CoDE. Finally,

TABLE II: Comparison of SHADE with CoDE on the
CEC2005 benchmark functions (30 dimensions).

F
SHADE

Mean (Std)
CoDE

Mean (Std)

F1 8.05e-18 (1.27e-17) 0.00e+00 (0.00e+00)+
F2 2.53e-17 (9.74e-18) 2.29e-15 (5.26e-15)−
F3 1.18e+04 (8.43e+03) 1.06e+05 (5.63e+04)−
F4 8.45e-10 (7.03e-09) 4.40e-03 (1.19e-02)−
F5 1.18e-03 (8.87e-03) 4.35e+02 (4.39e+02)−
F6 2.79e-01 (1.02e+00) 1.59e-01 (7.85e-01)+
F7 9.88e-03 (6.98e-03) 8.74e-03 (9.41e-03)+
F8 2.03e+01 (3.69e-01) 2.01e+01 (1.44e-01)≈
F9 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈
F10 2.36e+01 (3.47e+00) 4.07e+01 (1.15e+01)−
F11 2.66e+01 (1.93e+00) 1.20e+01 (3.32e+00)+
F12 1.60e+03 (2.34e+03) 3.15e+03 (4.26e+03)−
F13 1.36e+00 (9.64e-02) 1.58e+00 (3.13e-01)−
F14 1.24e+01 (2.55e-01) 1.23e+01 (4.54e-01)≈
F15 3.58e+02 (9.34e+01) 4.00e+02 (6.96e+01)−
F16 7.40e+01 (8.82e+01) 7.11e+01 (3.96e+01)+
F17 9.20e+01 (6.89e+01) 7.04e+01 (2.73e+01)+
F18 9.02e+02 (1.82e+01) 9.05e+02 (1.03e+00)−
F19 9.05e+02 (1.07e+01) 9.05e+02 (1.01e+00)−
F20 9.04e+02 (1.07e+01) 9.04e+02 (8.43e-01)−
F21 5.03e+02 (3.00e+01) 5.00e+02 (0.00e+00)≈
F22 8.78e+02 (1.33e+01) 8.60e+02 (2.16e+01)+
F23 5.38e+02 (4.03e+01) 5.34e+02 (4.28e-04)+
F24 2.00e+02 (0.00e+00) 2.00e+02 (0.00e+00)≈
F25 2.09e+02 (1.46e-01) 2.11e+02 (9.29e-01)−

+ 8

- 12

≈ 5

as shown in the bottom three rows of the table counting the
number of +,−, and ≈ results, SHADE has the best overall
performance on these 28 problems.

B. Evaluation of SHADE in Previously Published Environ-
ments

In the previous section, we showed that SHADE outper-
formed previous DE variants on the CEC2013 benchmarks.
However, we did not specifically tune the other algorithms
for the CEC2013 benchmarks, and used the control parameter
values which were suggested by the authors of the original
papers. Because the CEC2013 problems differ from the bench-
marks used in the original papers which are the source of
these suggested control parameter values, it is possible that
these suggested values were not appropriate for the CEC2013
benchmarks, resulting in an unfair comparison that favored
SHADE.

Therefore, in this section, we evaluated SHADE against
the previous DE variants in environments that are as close as
possible to the environments described in the original papers.
This set of comparisons does not include EPSDE (which is
included in the CEC2013 comparisons above), because the
original paper on EPSDE [6] uses a set of original benchmark



TABLE III: Comparison of SHADE with JADE on the 13
classical functions (30 dimensions).

f Gen
SHADE

Mean (Std Dev)
JADE

Mean (Std Dev)

f1 1500 1.0e-70 (4.4e-70) 1.3e-54 (9.2e-54)

f2 2000 4.5e-49 (5.1e-49) 3.9e-22 (2.7e-21)

f3 5000 5.4e-64 (3.3e-63) 6.0e-87 (1.9e-86)
f4 5000 2.4e-41 (9.6e-41) 4.3e-66 (1.2e-65)
f5 3000 8.0e-02 (5.6e-01) 3.2e-01 (1.1e+00)

20000 8.0e-02 (5.6e-01) 3.2e-01 (1.1e+00)

f6 100 2.7e+00 (1.2e+00) 5.6e+00 (1.6e+00)

1500 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00)
f7 3000 5.8e-04 (2.2e-04) 6.8e-04 (2.5e-04)

f8 1000 1.4e-03 (1.7e-03) 7.1e+00 (2.8e+01)

9000 0.0e+00 (0.0e+00) 7.1e+00 (2.8e+01)

f9 1000 1.6e-02 (7.4e-03) 1.4e-04 (6.5e-05)
5000 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00)

f10 500 2.5e-10 (9.4e-11) 3.0e-09 (2.2e-09)

2000 5.5e-15 (1.8e-15) 4.4e-15 (0.0e+00)
f11 500 1.5e-14 (9.3e-14) 2.0e-04 (1.4e-03)

3000 0.0e+00 (0.0e+00) 2.0e-04 (1.4e-03)

f12 500 3.7e-19 (1.2e-18) 3.8e-16 (8.3e-16)

1500 1.6e-32 (0.0e+00) 1.6e-32 (5.5e-48)
f13 500 3.9e-18 (5.6e-18) 1.2e-15 (2.8e-15)

1500 1.3e-32 (0.0e+00) 1.4e-32 (1.1e-47)

problems which were nontrivial to replicate faithfully. All
comparisons below use 30-dimensional problems.

We compared SHADE to CoDE using the CEC2005 bench-
mark [20]. Initially, we compared the SHADE results on the
CEC2005 benchmarks to the CEC2005 benchmark results for
CoDE in Table I of [5]. However, because the distributions
of the data in [5] overlap with the SHADE results, it was
unclear whether the differences between the two algorithms
was significant. Therefore, in order to be able to perform
statistical significance testing to determine which algorithm
performed better, we executed the CoDE Matlab code obtained
from [22].

We compared SHADE to the original published results
JADE [4], and dynNP-jDE [7] by running SHADE on the
same problems and under the same experimental conditions
described in the original papers. Both the comparisons with
JADE and dynNP-jDE were performed on the 13 “Classical
functions” [21]. The JADE results in Table III are from Table
IV in [4], and the dynNP-jDE results in Table IV are from
Table 3 in [7].

Tables II, III and IV show the results of the comparisons
with CoDE, JADE, and dynNP-jDE as described above. The
maximum number of generations and objective function calls
per run in JADE and dynNP-jDE are shown in Tables III and
IV. For CoDE, the maximum number of objective function
calls per run was D × 10, 000 (i.e., 300,000). The number of
runs per problem in CoDE, JADE and dynNP-JDE was 100, 50
and 100 respectively. It can be seen that in each case, SHADE
performs better.

However, note that some performance differences are most

TABLE IV: Comparison of SHADE with dynNP-jDE on the
13 classical functions (30 dimensions).

f
Max
NFE

SHADE
Mean (Std Dev)

dynNP-jDE
Mean (Std Dev)

f1 1.5e+05 8.76e-71 (3.63e-70) 4.04e-49 (3.76e-48)

f2 2.0e+05 3.78e-49 (4.40e-49) 3.53e-44 (2.15e-43)

f5 2.0e+06 1.20e-01 (6.83e-01) 1.54e-28 (1.76e-28)
f6 1.5e+05 0 (0) 0 (0)
f7 3.0e+05 6.15e-04 (2.25e-04) 1.69e-3 (4.92e-4)

f8 9.0e+05 -12569.5 (0.00e+00) -12569.5 (4.73e-11)
f9 5.0e+05 0 (0) 0 (0)
f10 1.5e+05 5.29e-15 (1.78e-15) 3.73e-15 (7.78e-16)

f11 2.0e+05 0 (0) 0 (0)
f12 1.5e+05 1.57e-32 (0.00e+00) 1.92e-32 (3.69e-32)

f13 1.5e+05 1.35e-32 (0.00e+00) 3.40e-32 (9.36e-32)

likely not due to fundamental algorithmic differences, but
rather due to the implementation language and experimental
environment. For example, in Table III, on problem f13, the
scores achieved by SHADE on the final generation appear to
be better than the scores achieved by JADE. However this is
actually likely to be due the difference in precision between
our C++ code for SHADE and the publicly available code for
JADE that we downloaded from [22].

C. Impact of Memory size

SHADE has two parameters that need to be set by the user:
the population size, and the memory size H . We investigated
the impact of H on the search performance of SHADE.

Table V shows the performance of SHADE on the
CEC2013 benchmarks, using various values for H . In the
experiments reported above, H was set to 100. Here, we
show results for H ∈ {5, 30, 50, 200, 300, 400, 500}. Due to
space constraints, we do not show results for each benchmark
function separately, but only show the aggregate results of
statistical testing, i.e., for each value of H , the number of
times it was significantly better/worse/equivalent to H = 100
according to the Wilcoxon rank-sum test (p < 0.05).

Relative to the results for H = 100, the results for H = 30
and H = 50 are slightly better. The results for H = 5 and
H = 10 are approximately equivalent to the performance when
H = 100. For H > 100, the performance seems to degrade
monotonically as H increases. From these results, it can be
concluded that the performance of SHADE depends on the
memory size H , and that the value H = 100 seems to be
a fairly good setting. A more complete understanding of the
impact of H , especially on higher dimensional problems, is an
avenue for future work.

D. On the importance of a finite memory

The previous experiment showed that if SHADE is imple-
mented as shown in Algorithm 1, the performance is dependent
on H , the size of the memory. Next, we investigated whether
it might be possible to eliminate H altogether by evaluating
variants of SHADE where H = ∞, and various mechanisms
for selecting parameters from memory are used. In these



TABLE V: SHADE Results on CEC2013 benchmarks using
various memory sizes H

H 5 10 30 50 100 200 300 400 500

7 7 6 4 + 1 0 3 3

6 7 2 1 - 6 8 10 12

15 14 20 23 ≈ 21 20 15 13

TABLE VI: Evaluation of infinite memory size SHADE vari-
ants (compared to H = 100)

H 100 ∞-Random ∞-Time ∞-Fitness

+ 3 3 4

- 14 8 18

≈ 11 17 6

variants, the memory size is set to the maximum number of
generations to be executed, which, in practice, is equivalent to
H = ∞.

Furthermore, Algorithm 1, line 9 is modified so that the
element that is selected from memory is selected in one of the
following ways: (1) Randomly, (2) favor recently used parame-
ters1, (3) favor parameters that led to the largest improvements
since the previous generation (a roulette-wheel selection). We
refer to these variants as these variants as ∞-Random, ∞-
Time, and ∞-Fitness, respectively.

The results are shown in Table VI. As with Section VI-C,
we show only the aggregate results of the statistical com-
parisons of the infinite-memory SHADE variants compared
to H = 100. All of the infinite-memory variants clearly
performed worse than H = 100. Thus, it seems that the use of
a properly tuned, finite memory size contributes significantly
to the performance of SHADE.

VII. CONCLUSIONS

We proposed SHADE, an adaptive DE algorithm based
which extends JADE [4] by using a historical memory of
recently successful parameter sets in order to guide the gen-
eration of new control parameter values. SHADE was shown
to outperform previous, state-of-the-art DE algorithms on a
large set of benchmark problems, including the CEC2013
benchmark set, as well as CEC2005 benchmarks and the set
of 13 classical benchmark problems.

Directions for future work include analysis of how the
parameter values actually change during search, in order to
gain a deeper understanding of the dynamics of the algorithm
(e.g., how does the trajectory of the control parameters differ
compared to strategies such as JADE, jDE, EPSDE), as well as
developing a principled method for determining the memory
size parameter for new classes of problems.

1In this case, Pi, the probability of selecting index Gi is determined using
a roulette-wheel selection based on the value of Gi: Pi = Gi/

∑CG
j=1 Gj ,

where CG is number of the current generation.
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