
Evaluation of a Randomized Parameter Setting
Strategy for Island-Model Evolutionary Algorithms

Ryoji Tanabe and Alex Fukunaga
Graduate School of Arts and Sciences

The University of Tokyo

Abstract—This paper presents a large-scale, empirical eval-
uation of a Random, Heterogeneous Island-Model (RHIM) for
evolutionary algorithms (EAs), where the control parameter
values are independently, randomly assigned for each island that
has recently been proposed by Gong and Fukunaga as a method
for configuring island-model evolutionary algorithms in situations
where it is not possible to expend the resources to carefully tune
control parameters for a particular application.

We apply RHIM to standard DE, JADE (an adaptive DE),
and real-coded genetic algorithms. Evaluations are performed on
standard black-box function optimization benchmarks, as well
as combinatorial optimization problems (the TSP and QAP).
The search efficiency of RHIM is compared to manual tuning
of parameter settings for each benchmark problem. Our results
with up to 256 islands, show that the search efficiency of RHIM,
a method which does not involve any parameter tuning, tends to
becomes increasingly competitive with manual parameter tuning
as the number of islands increases. The consistent, relatively good
performance of RHIM when applied to a variety of EAs on
numerous, different benchmark problems suggest that it can be
an effective, default method for configuring island-model EAs.

I. INTRODUCTION

Evolutionary algorithms (EAs) are “embarrassingly paral-
lel” algorithms that are a natural fit for increasingly ubiquitous,
parallel computers, including multicore machines, and dis-
tributed clusters (including cloud/grid/P2P resources). While
there are numerous models for mapping population-based
methods to parallel processors, including master-slave, island,
fine-grained, and hierarchical models, parallelization remains
an active area of research.

An island-model EA consists of a set of islands, where
each island executes an independent EA instance (i.e., subpop-
ulation or deme), and selection and other evolutionary opera-
tors are applied in each island independently from the other
islands. The islands may communicate with each other via
some migration mechanism. The island model is a particularly
simple, natural method of implementing a parallel EA, e.g.,
each island could executes as a separate thread (on a shared-
memory, multicore system), or as a separate process on a
distributed system. The idea of largely independent, possibly
communicating demes can also be applied to a sequential,
single-processor EA as a way to impose an artificial population
structure to promote/control diversity.

In the simplest possible island-model EA, each island is
configured to use the same control parameters (e.g., population
size), so that each island essentially executes the same algo-
rithm, except for differing initial populations. We refer to this
type of island-model EA as a homogeneous island-model EA.

In contrast, in a heterogeneous island-model EA, it is possible
to configure each island independently so that a different set
of control parameters is used on each island.

In this paper, we consider the problem of configuring
an island-model EA in a resource-constrained, “black-box”
optimization scenario: The goal is to optimize the parameters
to an unknown, poorly understood objective function, e.g., a
simulation which takes hours or even days to execute just once
(c.f., [1]). Suppose that a practitioner is given 1 week to find
a good (but not necessarily optimal) solution for a problem
where a single objective function evaluation (i.e., simulation
run) requires 1 CPU hour. This allows only 24 × 7 = 168
objective function evaluations per core during the week. Even
on a cluster with 100 CPU cores this is only enough time to
execute 16800 objective function evaluations – barely enough
for one (or several) runs of an EA. It is well-known that
the performance of EAs is significantly influenced by control
parameter settings. Unfortunately, in this kind of resource-
constrained scenario, parameter tuning is infeasible.

How can one configure the control parameters of an
island-model EA under these severe, resource constraints? The
problem of setting control parameters for an EA has been
extensively studied (c.f., [2] for a recent survey). However, the
vast majority of the literature on parameter setting techniques
has been for single-deme EAs, and while there has been
some work on parameter setting in island-model EAs (e.g.,
[3]), parameter tuning for multi-island EAs, particularly for
heterogeneous island-model EAs, is still not well-understood.

Recently, Gong and Fukunaga proposed the Random,
Heterogeneous Island Model (RHIM), a simple approach to
parameter setting where each island is assigned a set of control
parameter values that are selected randomly (uniformly) from a
range of plausible values [4]. An evaluation of this simple tech-
nique to a standard, binary-coded island-model GA showed
promising results for three standard benchmark problems and
a sorting network generation problem.

In this paper, we present a large-scale, evaluation of
the Random Heterogeneous Island Model. The approach is
evaluated on a set of 13 standard optimization benchmark
functions, as well as the Traveling Salesperson Problem (TSP)
and the Quadratic Assignment Problem (QAP). While previous
work on RHIM was quite limited in scope and used a simple,
binary-coded GA, this work evaluates RHIM on a range of
EA’s, including standard Differential Evolution [5] (including
several migration topologies and policies), a real-coded GA,
an adaptive DE (JADE) [6], and problem-specific GAs for
the TSP and QAP. Our results indicate that RHIM should be
considered as a simple, effective, default method for setting



control parameters in an island-model EA in situations where
careful parameter tuning is not feasible.

The paper is organized as follows. In Section II, we
describe the Randomized, Heterogeneous Island Model for
configuring island control parameters. Section III describes
alternative island model configuration models which are used
for comparison in the empirical evaluation of RHIM. Section
IV presents the empirical evaluation of RHIM applied to differ-
ential evolution on standard, black-box function optimization
benchmarks. In Section V, we evaluate RHIM on 4 alternative
migration topologies and policies. The evaluation of RHIM on
real-coded GA and JADE, an adaptive DE are presented in
Sections VI and VII. We compare our work with related work
in Section IX, and conclude with a discussion of our results
and directions for future work in Section X.

II. RANDOMIZED, HETEROGENEOUS ISLAND-MODEL

The two key features of a Randomized, Heterogeneous,
Island-Model (RHIM) EA are:

• Heterogeneity - each island can be assigned a different
set of control parameter values, and

• Randomization - the parameter values are selected
randomly.

The first, basic feature is heterogeneity, i.e., islands can
have varying control parameter values, rather than a homo-
geneous island-model EA where all islands have the same
control parameter values. For any particular problem, it might
be the case that the best performance is obtained with a
homogeneous island configuration, but a heterogeneous set
of control parameters should be more robust (in the sense of
alleviating worst-case performance) when the solver is applied
to a wide range of test problems. Of course, if the scope of
test problems is completely unconstrained, then the No Free
Lunch Theorems imply that all configurations will exhibit
the same average performance [7]. However, if we restrict
ourselves to broad classes of benchmark optimization problems
heterogeneous configurations offer the possibility of robustness
compared to homogeneous configurations.

The second key feature is the randomized selection
of parameter values. More precisely, the control parame-
ter values are selected uniformly and independently from
D(p1), ..., D(pn), the domains of parameters p1, ..., pn. For
example, in a GA, the parameters might be the population size
pop ∈ [2, 500], crossover rate pcross ∈ [0.0, 1.0], and mutation
rate pm ∈ [0.0, 1.0].

It is important to note that this space of parameter values is
not unconstrained, and it is not completely arbitrary. Randomly
selecting parameter values from a completely unconstrained
parameter space is clearly not a good idea. For example, if
the range of population sizes is [1, 1010] and we uniformly
sample the population size from this range, the expected value
is 109/2. Even assuming that there is enough memory for a
population of this size, this will cause the EA to spend all of
the available time evaluating the initial population, behaving
in effect like a random generate-and-test algorithm, regardless
of the values of the other control parameters. Thus, we assume
that the parameter space is constrained such that “obviously
bad” parameter values (i.e., values that most practitioners

Algorithm 1: Island EA Execution Model
// Initialization phase

1 Initialize island population and control parameters;
// Main loop

2 while The termination criteria are not met do
// Advance each island 1 ’step’

3 for i = 1 to ] of islands do
4 Evolve1Step(Islandi);
5 end

// Migration phase
6 for i = 1 to ] of islands do
7 if The best individual on Islandi was updated then
8 Islandr = a randomly selected destination island;
9 if fitness(best individual(Islandi)) <

fitness(worst individual(Islandr)) then
10 Replace(worst individual(Islandr),

best individual(Islandi));
11 end
12 end
13 end
14 end

would reject out of hand) are excluded. The space represents
the set of possibilities that the programmer believes to be the
feasible parameter settings.

This paper focuses on a static approach where the control
parameters that are determined according to random sampling
do not change during an EA run. For example, if population
size is a control parameter which is set according to the
RHIM approach, then it remains constant through the EA
run. However, this allows for the possibility that each island
is executing a self-adaptive EA – in that case, the control
parameters we consider are meta-level control parameters to
the self-adaptive EA. For example, in Section VII, we use
RHIM to set the meta-level control parameters for an island-
model version of JADE [6], an adaptive DE.

A. Island-Model EA Execution Model

Island-model evolutionary algorithms are naturally suited
for parallel processing, and the original work on RHIM GAs
by Gong and Fukunaga evaluated a parallel GA implemented
on a cluster [4]. However, large-scale evaluation of parallel
code is challenging due to resource allocation/cost issues –
our experiments use up to 256 islands. Thus, while our work
is motivated by the problem of configuring a parallel EA, the
experiments are performed using a serial implementation of an
island-model EA. While experiments are actually executed on
a cluster with 48 cores, the island-model EA code is imple-
mented serially, and we executed multiple runs in parallel.

Algorithm 1 shows the (simulated) parallel execution
model used for all of our experiments. The default migration
topology is a fully connected topology where the destination is
randomly selected island. After each “step” (defined below),
if the local best-so-far individual M has been updated, M ′,
a copy of M , is sent to some destination according to the
topology described above. At the destination island D, we
check whether the migrant M ′ is more fit than the worst
member of D. If so, then M replaces the worst member of D;
otherwise, M ′ is discarded.

A “step” is a discrete batch of objective function evalua-
tions. Migrations can only occur in the window after all islands
have finished executing a step. In the case of a homogeneous
island-model EA, a “step” is simply the number of individuals



per island. On the other hand, in a heterogeneous island-model
EA, each island subpopulation can have a different number
of individuals, so a “step” is not necessarily equivalent to a
complete generation. In general, a step is defined as Pmax

objective function evaluations, where Pmax is the number of
individuals in the island with the largest population. Thus, in
this model, across each step, each island performs the same
number of evaluation function evaluations.

III. ALTERNATIVE ISLAND MODEL CONFIGURATION
MODELS

The main hypothesis of this paper is: given a feasible
parameter space, and a sufficiently large number of islands,
assigning control parameters to each island by sampling this
space is a relatively robust method for configuring the param-
eters of an island-model EA.

We evaluate RHIM by comparing it to several natural,
alternative methods for configuring an island-model EA.

1) Best Homogeneous-Multi (BH-M): Another approach
to configuring an island-model EA which is common in
practice is brute-force parameter tuning. The BH-M config-
uration models such a brute-force parameter tuning effort,
is intended to generate a “highly-tuned” configuration that
is tuned specifically for each particular target problem. 200
parameter sets are randomly generated. For each parameter set
S, we create a homogeneous, I-island-model EA by replicating
S on all processors. We evaluate each of these 200, I-island
configurations on the target problem, and use the configuration
with the best average performance. 1

2) Median Homogeneous-Multi (MH-M): It should be ex-
pected that the BH-M configuration, which is the best of
200 configurations, will perform significantly better than the
RHIM. To investigate how RHIM compares to a less intensive,
brute-force tuning effort, we also evaluate the configuration
which had the median (100th best) performance out of the 200
I-island configurations evaluated while generating the BH-M
configuration above. The MH-M can be considered a model
of a brute-force parameter tuning effort where insufficient
time/resources are allocated to the tuning effort.

3) Best Homogeneous-Single (BH-1): The basic idea of
the BH-1 configuration strategy is to find a parameter set
that works well for a single-island EA, and then create a
multi-island EA by replicating that single island. This is a
naive, but plausible method for practitioners who have limited
time/resources for parameter tuning, but decide to invest some
effort for parameter configuration. 200 parameter sets are
randomly generated. Each set is evaluated by instantiating a
single-island EA that is configured to use the set, and running
the EA on a target problem. The parameter set which has the
best utility is selected. This parameter set is then copied to all
of the I islands.

Although tuning a island-model EA based on the per-
formance of a single island has the advantage that it can
require significantly less computational effort to evaluate many
different parameter settings, the obvious disadvantage is that

1The utility of each parameter set is evaluated by running 10 trials, where
on each trial, max. fitness evaluations per trial of D × 10, 000), i.e., max.
300,000 fitness evals/trial.

replicating a good, single-island configuration may not lead to
a good multi-island configuration.

Note that the BH-1 and BH-M configuration processes
was applied separately to every benchmark problem instance
used in this paper. We did not seek to generate configurations
that worked well “on average” – the BH-1 and BH-M con-
figurations represent substantial, brute-force efforts to tune a
homogeneous EA for each, particular benchmark problem.

While migration is implemented as described in Section
II-A for RHIM, BH-M, and MH-M, we do not use migration
in BH-1, because preliminary experiments showed that BH-1
performed best without migration.

IV. EVALUATING THE SCALABILITY OF RHIM BASED
DIFFERENTIAL EVOLUTION

We first evaluate the scalability of RHIM as the number
of islands is varied. The RHIM is applied to Differential
Evolution (DE) [5] for black-box function optimization. DE
is a simple, effective method which has been successfully
applied to a wide variety of applications [8]. Like other EAs,
the performance of DE depends significantly on its control
parameters. The basic control parameters for island-based DE
are the population size P , scaling factor F , and crossover rate
CR, and it has been shown that the best settings for these
parameters vary according to the problem [5], [9], [10]. In
practice, it is necessary to tune these parameters in order to
obtain good performance.

The control parameters for the DE are the following:

• Scaling factor F ∈ [0, 1], crossover rate CR ∈ [0, 1]

• The population is set to the dimensionality of the
problem multiplied by a parameter P ∈ [1, 5].

• The mutation strategy is selected from among the 7
strategies in table II, where Ki is a uniform random
number in [0, 1]. After mutation, Binomial Crossover
is applied to mutant vector and parent vector for
generating a trial vector.

We use the widely used, 13 classical benchmark functions
[11]. Table I shows some features of each function, as well
as the maximum number of objective functions and target
accuracy (defined below). Note that the maximum number of
fitness evaluations is per island, e.g., a 4-island EA would
execute 4 × 1.5e + 05 = 6e + 06 total evaluations. A search
algorithm terminates (“succeeds”) if it finds a solution whose
error relative to the known, optimal score is within the target
accuracy. For each problem, we executed 50 independent
trials, and measure the success rate SR (% of trials that
found a solution within the target accuracy), as well as the
number of fitness evaluations (NFE) executed on the successful
trials. Statistical tests for significance were performed using
the Wilcoxon rank-sum test with a significance threshold of
p < 0.05. While we use all 13 functions in Section IV-A, the
rest of the experiments with black-box objective functions use
6 out of the 13 functions (f1, f3, f5, f8, f9, f11) .

A. Scalability of RHIM as the Number of Islands Varies

Table III compares RHIM, MH-M, BH-1, and BH-M on
128 and 256 islands. For ease of comparison, the NFE values



TABLE III. ISLAND-BASED DE CONFIGURED USING RHIM, MH-M, BH-1, AND BH-M ON 128 AND 256 ISLANDS. 50 RUNS/PROBLEM

128 islands 256 islands
f RHIM MH-M BH-1 BH-M RHIM MH-M BH-1 BH-M

SR NFE SR NFE SR NFE SR NFE SR NFE SR NFE SR NFE SR NFE
f1 100 1.3e+04 100 2.8− 100 1.2− 100 0.27+ 100 1.2e+04 100 3.4− 100 1.3− 100 0.29+

f2 100 1.8e+04 82 1.4− 100 1.1− 100 0.24+ 100 1.7e+04 100 3.8− 100 1.2− 100 0.31+

f3 100 4.8e+04 26 10− 100 1.3− 100 0.23+ 100 4.3e+04 100 7.7− 100 1.5− 100 0.23+

f4 100 8.0e+04 100 3.2− 100 1.5− 98 0.19+ 100 6.5e+04 100 4− 100 1.9− 100 0.17+

f5 100 8.4e+04 88 5.3− 100 1.7− 96 0.32+ 100 7.7e+04 100 5.6− 100 1.8− 100 0.33+

f6 100 4.7e+03 100 2.1− 100 1.3− 98 0.24+ 100 4.4e+03 100 2.6− 100 1.3− 100 0.26+

f7 100 4.0e+03 100 3.5− 100 3.4− 100 0.22+ 100 3.5e+03 100 3.3− 100 3.6− 100 0.19+

f8 100 1.7e+04 4 1.5− 100 2.8− 100 0.37+ 100 1.6e+04 0 N/A 100 3.1− 100 0.32+

f9 100 2.0e+04 0 N/A 100 2.7− 98 0.83+ 100 1.8e+04 0 N/A 100 3− 84 0.25+

f10 100 2.1e+04 100 2.9− 100 1.2− 100 0.27+ 100 1.9e+04 100 3.5− 100 1.3− 100 0.29+

f11 100 1.4e+04 82 4− 100 2− 100 0.27+ 100 1.3e+04 100 5.9− 100 2.1− 100 0.29+

f12 100 1.1e+04 76 0.27+ 100 1.3− 100 0.28+ 100 1.1e+04 100 3.7− 100 1.4− 100 0.3+

f13 100 1.3e+04 100 2.9− 100 1.7− 100 0.27+ 100 1.2e+04 100 3.4− 100 1.8− 100 0.29+

Avg. SR 100.0 73.7 100.0 99.2 100.0 84.6 100.0 98.8
Avg. Q 2.7e+02 ∞ 4.5e+02 8.0e+01 2.4e+02 ∞ 4.4e+02 6.5e+01

TABLE IV. ISLAND-BASED DE CONFIGURED USING RHIM, MH-M, BH-1, AND BH-M ON 4, 8, 16, 32 64 ISLANDS. 50 RUNS/PROBLEM

Strategies 4 islands 8 islands 16 islands 32 islands 64 islands
SR Avg. Q SR Avg. Q SR Avg. Q SR Avg. Q SR Avg. Q

RHIM 76.6 1.9e+03 84.2 1.0e+03 89.7 5.6e+02 93.4 4.1e+02 98.6 3.2e+02
MH-M 39.2 ∞ 45.4 ∞ 64.3 ∞ 72.6 ∞ 76.0 ∞
BH-1 100.0 4.9e+02 100.0 4.8e+02 100.0 4.7e+02 100.0 4.6e+02 100.0 4.5e+02
BH-M 92.8 3.2e+02 95.5 2.2e+02 96.9 1.5e+02 98.2 1.2e+02 99.4 1.0e+02

TABLE I. 13 CLASSICAL BENCHMARK FUNCTIONS [11]

f Name
Max NFE
(D = 30)

Target
accuracy Separable Unimodal

f1 Sphere 1.5e+05 1.0e-08 Y Y
f2 Schwefel 2.22 2.0e+05 1.0e-08 Y Y
f3 Schwefel 1.2 5.0e+05 1.0e-08 N Y
f4 Schwefel 2.21 5.0e+05 1.0e-08 N Y
f5 Rosenbrock 2.0e+06 1.0e-08 N N
f6 Step 1.5e+05 1.0e-08 Y Y
f7 Noisy Quartic 3.0e+05 1.0e-02 Y Y
f8 Schwefel 2.26 9.0e+05 1.0e-08 Y N
f9 Rastrigin 5.0e+05 1.0e-08 Y N
f10 Ackley 1.5e+05 1.0e-08 Y N
f11 Griewank 2.0e+05 1.0e-08 N N
f12 Penalized1 1.5e+05 1.0e-08 Y N
f13 Penalized2 1.5e+05 1.0e-08 Y N

TABLE II. DE STRATEGIES

Strategies Definitions
rand/1 xr1 + F · (xr2 − xr3 )
rand/2 xr1 + F · (xr2 − xr3 ) + F · (xr4 − xr5 )
best/1 xbest + F · (xr1 − xr2 )
best/2 xbest + F · (xr1

− xr2
) + F · (xr3

− xr4 )
current-to-best/1 xi + F · (xbest − xi) + F · (xr1 − xr2 )
current-to-best/2 xi + F · (xbest − xi) + F · (xr1 − xr2 )

+F · (xr3 − xr4 )
current-to-rand/1 xi + Ki · (xr1 − xi) + F · (xr2 − xr3)

for MH-M, BH-1, and BH-M are scaled values which are
multiples relative to RHIM. For example, in Table III, on
problem f1, 256 islands, the NFE for MH-M was 3.4 times
higher than the NFE for RHIM, i.e., the NFE for MH-M was
3.4× 1.2e+04 = 40, 800. The best result for each function is
shown in bold. The +,−,≈ symbols indicate whether result
is significantly better than, significantly worse than, or not
significantly different (according to the Wilcoxon ranked-sum
test, threshold p < 0.05), compared to RHIM result for the

same problem. At the bottom of the table, the average SR
value for all problems are shown. The average Q score is also
shown, where Q = NFE/SR. A low Q score indicates that the
search finds an acceptable solution quickly and reliably. In case
a method completely fails on for some particular problem (SR
= 0), the average Q across all problems is defined to be ∞.

The results for 4, 8, 16, 32, and 64 islands are shown in
Table IV. Due to limited space, only the mean success rate
SR and mean Q-scores (defined above) across all problems
are shown.

Table III shows that for 128 and 256 islands, RHIM out-
performs MH-M and BH-1 on almost all of the 13 benchmark
problems. Tables IV and III show that regardless of the number
of islands, MH-M has the worst performance and completely
fails to find acceptable (fitness below the target threshold)
solutions for several problems (SR=0). Thus, the average Q-
score for MH-M is ∞ in all cases. Even when MH-M succeeds
in finding a solution, the amount of search required (NFE) is
significantly higher than that of RHIM.

Although BH-1 outperforms RHIM for 4-16 islands, the
Q-score for RHIM is better than BH-1 for 32 or more islands.
For 128 and 256 islands, RHIM achieves a success rate of
SR=100% for all problems, and for all problems, the NFE
for RHIM is lower than that of BH-1. Thus, with sufficient
parallelism (number of islands), the trivial, RHIM configura-
tion method consistently and significantly outperforms BH-1,
the result of tuning an island-model EA based on tuning the
performance of a single island for each problem.

As expected, BH-M, which is the result of tuning a I-
island, homogeneous DE for each benchmark problem sepa-
rately, achieves the best performance overall, regardless of the
number of islands. The Q-score is consistently the highest, and
it can be seen from Table III, the NFE for BH-M is signifi-



TABLE V. DE WITH NO MIGRATION. 6 TEST FUNCTIONS
(f1, f3, f5, f8, f9, f11). 50 RUNS/PROBLEM

Strategies 16 islands 128 islands
SR Avg. Q SR Avg. Q

RHIM 91.7 2.2e+03 100.0 6.9e+02
MH-M 3.0 ∞ 16.7 ∞
BH-M 100.0 5.2e+02 100.0 4.8e+02

TABLE VI. DE WITH RING/BEST MIGRATION TOPOLOGY/POLICY. 6
TEST FUNCTIONS (f1, f3, f5, f8, f9, f11). 50 RUNS/PROBLEM

Strategies 16 islands 128 islands
SR Avg. Q SR Avg. Q

RHIM 79.3 8.7e+02 100.0 4.4e+02
MH-M 41.3 ∞ 66.0 ∞
BH-M 96.7 2.7e+02 99.3 1.3e+02

TABLE VII. DE WITH RING/PERIODIC MIGRATION TOPOLOGY/POLICY. 6
TEST FUNCTIONS (f1, f3, f5, f8, f9, f11). 50 RUNS/PROBLEM

Strategies 16 islands 128 islands
SR Avg. Q SR Avg. Q

RHIM 98.7 1.0e+03 100.0 5.7e+02
MH-M 55.0 ∞ 98.7 2.5e+03
BH-M 99.0 2.3e+02 100.0 2.0e+02

TABLE VIII. FULL/PERIODIC MIGRATION TOPOLOGY/POLICY. 6 TEST
FUNCTIONS (f1, f3, f5, f8, f9, f11). 50 RUNS/PROBLEM

Strategies 16 islands 128 islands
SR Avg. Q SR Avg. Q

RHIM 97.3 9.2e+02 100.0 4.7e+02
MH-M 47.0 ∞ 59.0 7.9e+04
BH-M 97.7 2.2e+02 99.3 2.0e+02

cantly lower than that of RHIM on all 13 problems. This shows
that clearly, carefully tuning an EA for each problem results in
good performance. However, as noted in Section I, tuning an
optimization algorithm for a given problem is frequently not
feasible in many real-world, black-box optimization scenarios,
where each fitness function evaluation takes a very long time.
The RHIM is intended for such scenarios, where parameter
tuning is infeasible due to time/resource constraints.

We have also evaluated island-model DE using RHIM, BH-
1, BH-M, and MH-M on harder problems (D = 60 dimensions
and D = 90 dimensions) for 16 and 128 islands. Although
details are omitted due to space constraints, the results for
60 and 90 dimensions were qualitatively similar to the 30-
dimension, 16 and 128 island results shown here.

V. EVALUATION OF RHIM USING VARIOUS MIGRATION
TOPOLOGIES AND POLICIES

In all of our experiments except this section, we use a
fully connected migration topology, and the migration policy
is to generate a migrant and send it to a randomly selected
neighbor when the local best-so-far individual is updated. In
this section, we evaluate RHIM for function optimization using
4 alternative migration topologies and policies:2

• No migration; islands evolve independently.

• Ring/Best - Ring Topology; Migrant sent when local
best-so-far is sent.

• Ring/Periodic - Ring topology; Migrant is sent every
5 steps (where “step” is defined as in Section II-A).

• Full/Periodic - Fully connected topology; Migrant is
sent every 5 steps.

For each migration strategies, we evaluated RHIM, MH-
M, BH-M for DE on 16 and 128 islands, using 6 function
optimization problems (f1, f3, f5, f8, f9, f11). BH-1 was not
evaluated in this comparison because it performs significantly
better without migration. The results are shown in Tables V
(no migration), VII (Ring+Periodic), VI (Ring+BestUpdate),
VII (Ring+Periodic), and VIII (Full+Periodic).

The results show that RHIM consistently outperforms MM-
H for all migration topologies/policies, and for both 16 and 128

2Using this naming scheme, the default migration topology/policy used in
all of the other experiments would be called “Full/Best”.

islands. Thus, the robustness of RHIM does not depend on any
particular migration topology/policy.

VI. RHIM-BASED REAL-CODED GA

In principle, RHIM can be applied to any EA with control
parameters. In this section, we apply RHIM to a real-coded
genetic algorithm (GA). The PBX-α [12] crossover operator
and G3 [13] generation alternation model are used. In order to
be tunable, the G3 generation alternation model is modified as
follows: While the original G3 always selects the best individ-
ual among the parents as the centric parent, our implementation
selects the best individual among a subpopulation of size P×p
(p ∈ [0, 1]) which is selected randomly from the full population
in the current generation.

The control parameters for the GA are the following: The
population size was set by multiplying the dimensionality of
the problem (D = 30) by a multiplier m ∈ [2.0, 10.0], the
number of offspring per mating was selected from [1, 10], the
expansion rate α for the PBX-α was selected from [0.5, 1.5],
and greediness parameter for G3 (described above) was p −
rate ∈ [0.0, 1.0].

Table IX shows the summary of the results of comparing
RHIM, MH-M, BH-1, BH-M using 16 and 128 islands on
6 problems from Table I (f1, f3, f5, f8, f9, f11). For bench-
marks f8, f9, the island-model RCGA was unable to find
solutions within the target accuracy threshold used for our
DE experiments within the given computational limits. Thus,
for these two benchmarks, we changed the target accuracy
from 10−8 to 2.5× 103 and 5.0× 101, respectively, for these
RCGA experiments. The results are similar to the DE results
– with a large number of islands, the performance of RHIM is
substantially better than MH-M and BH-1, and similar to the
performance of BH-M.

VII. RHIM-BASED ADAPTIVE DE

While we have shown so far that the RHIM is a robust
method for configuring island-model evolutionary algorithms
including standard DE and GAs, there is a large body of work
on self-adaptation mechanisms for evolutionary algorithms
(c.f. [2]), mostly for single-deme EA’s. Most of these self-
adaptation mechanisms are not entirely parameter free – while
some of the traditional control parameters are automatically
adapted, there are new, “meta-level control parameters” that
control, for example, the rate of self-adaptation.



TABLE IX. REAL-CODED GENETIC ALGORITHM: 6 FUNCTIONS
(f1, f3, f5, f8, f9, f11). 50 RUNS/PROBLEM

Strategies 16 islands 128 islands
SR Avg. Q SR Avg. Q

RHIM 62.0 6.3e+02 95.7 4.2e+02
MH-M 73.0 3.9e+02 98.3 8.7e+02
BH-1 100.0 8.4e+02 100.0 7.1e+02
BH-M 91.0 3.7e+02 95.3 1.9e+02

TABLE X. ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM (JADE):
6 FUNCTIONS (f1, f3, f5, f8, f9, f11) . 50 RUNS/PROBLEM

Strategies 16 islands 128 islands
SR Avg. Q SR Avg. Q

RHIM 97.8 3.6e+02 99.7 2.9e+02
MH-M 93.0 5.6e+02 100.0 5.2e+02
BH-1 100.0 4.4e+02 100.0 4.1e+02
BH-M 89.5 3.1e+02 99.5 2.4e+02

TABLE XI. GA WITH ORDER-BASED OPERATORS FOR THE TSP: 6 TSP
INSTANCES (ATT48, EIL51, PR76, RAT99, KROA100, LIN105) FROM

TSPLIB. 50 RUNS/PROBLEM

RHIM MH-M BH-1 BH-M
+ 0 3 1

16 islands - 2 1 0
≈ 4 2 5
+ 0 0 2

128 islands - 2 4 0
≈ 4 2 4

TABLE XII. GA WITH ORDER-BASED OPERATORS FOR THE QUADRATIC
ASSIGNMENT PROBLEM: 7 QAP INSTANCES (TAI25A, BUR26A, KRA30A,
TAI35A, TAI35B, LIPA40A, TAI50B) FROM QAPLIB. 50 RUNS/PROBLEM

RHIM MH-M BH-1 BH-M
+ 2 7 5

16 islands - 0 0 0
≈ 5 0 2
+ 0 5 5

128 islands - 3 0 0
≈ 4 2 2

RHIM is complementary to self-adaptation, because a self-
adaptive mechanism can be used to automatically tune base
level control parameters on each island, while the meta-level
control parameters are set randomly according to the random
heterogeneous model.

JADE [6] is one of the state-of-the-art, adaptive DE algo-
rithm which dynamically self-adapts the F and CR param-
eters. JADE has been shown to outperform standard DE on
a wide variety of benchmark problems. JADE has two meta-
level parameters which affects performance: c, which controls
the rate of parameter adaptation, and p, which determines
the greediness of the mutation strategy. Although it has been
argued that the performance of standard single-deme JADE
should be insensitive to the values of c and p [6], this has not
been evaluated in an island-model setting.

We applied RHIM to JADE, with the following 4 param-
eters m, c, p, a: The population size was set by multiplying
the dimensionality of the problem (D = 30) by a multiplier
m ∈ [1.0, 5.0]. Following the parameter study of JADE [6],
c ∈ [0.05, 0.2], and p ∈ [0.05, 0.2]. In addition, the size of the
archive used by JADE was set to the population size multiplied
by an archive multiplier a ∈ [0.0, 1, 0].

Table X shows the results for 6 benchmark problems
(30 dimensions) using 16 and 128 islands. RHIM performs
relatively well, and has a significantly better average Q-score
than MH-M and BH-1. This shows that RHIM can be applied
successfully to a self-adaptive EA.

VIII. EVALUATION ON COMBINATORIAL OPTIMIZATION
PROBLEMS

So far, our evaluation has focused on the application
of RHIM to various evolutionary algorithms for black-box
function optimization benchmark problems. In this section,
we evaluate RHIM on two representative, combinatorial opti-
mization problems: the Traveling Salesperson Problem (TSP)
and Quadratic Assignment Problem (QAP) (see, e.g., [14] for
definitions).

For both problems, we used a Steady State GA (SSGA)
with problem-specific genetic representation and genetic oper-

ators. The control parameters for the SSGA are the following
(N is the size of the problem instance).

• P ∈ [1, 10] is a parameter that control the population
size (the population size is set to P ×N ).

• Tournament size TS ∈ [2, N/5]

• The number of children C ∈ [2, N/5]

• Mutation rate mr ∈ [0, 1]

A standard order-based representation, along with problem-
specific crossover and mutation operators, was used for both
the TSP [15] and QAP [16]. Specifically, for the TSP, Order
Crossover (OX) and a 2-Edge Exchange Mutation operator
that swaps 2 randomly selected edges were used, and for the
QAP, the Cycle Crossover (CX) operator and a Swap Mutation
operator that swaps 2 randomly selected nodes was used.

In these experiments, we used 6 TSP instances (att48,
eil51, pr76, rat99, kroA100 and lin105) from TSPLIB 1, and 7
QAP instances (tai25a, bur26a, kra30a, tai35a, tai35b, lipa40a
and tai50b) from QAPLIB 2. The numerical portion of each
instance indicates the problem size N (e.g., att48 is a TSP
instance with 48 cities), and The maximum number of fitness
evaluations (NFE) was N×1, 000. Unlike the previous, black-
box function optimization instances, it was difficult to set
an appropriate target accuracy, so for the TSP and QAP, we
evaluate the quality of the best solution found after NFE
evaluations.

Tables XI-XII summarize the TSP and QAP results for
16 and 128 islands. The number of problems for which each
method performed significantly better (+), worse (−), and not
significantly different (≈) compared to RHIM are shown.

Table XI shows that on the TSP, RHIM outperforms MH-M
for both 16 and 128 islands, and also outperforms BH-1 with
128 islands. On the QAP, Table XII shows that while RHIM
performs worse than MH-M on 16 islands, RHIM outperforms
MH-M with 128 islands.

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
2http://www.opt.math.tu-graz.ac.at/qaplib/



IX. RELATED WORK

Miki, Hiroyasu, and Hatanaka proposed DEGA, a hetero-
geneous, island model GA where each island was assigned a
different mutation rate and crossover rate [17]. This scheme
was evaluated using 9-islands, where the specific values for the
crossover and mutation rates were manually selected. They
showed that DEGA outperformed hand-tuned configurations
of a standard, binary-coded GA for the Rastrigin, Schwefel,
Griewank, and Rosenbrock functions in 10 dimensions, on a
9-island distributed GA [17], [18].

Herrera and Lozano proposed a heterogeneous, island-
model GA where each island uses a different crossover op-
erator [19]. They used a 8-island model with a 3-D hyper-
cube topology, and manually assigned a gradually increas-
ing/decreasing crossover expansion rate and selection pressure
to each island, in order to design an environment where
the balance between exploitation and exploration gradually
increased as the islands were traversed according to their
topology.

Dorronsoro and Bouvry investigated a wide variety of dis-
tributed DE implementations, including a two-island, hetero-
geneous model where both islands were manually configured
(HdDE) [20]. On a single processor, this was shown to be
competitive with the state-of-the-art, single-threaded DE.

Weber, Neri, and Tirronen proposed a heterogeneous, dis-
tributed DE with two classes of islands. The first class of
islands are uniformly configured (i.e., homogeneous), and are
intended to explore the search space, and the second class
of islands are dynamically, heterogeneously configured and
intended to perform local search [21]. This approach was
evaluated on a large set of function optimization benchmarks
using 2-3 subpopulations.

Peng et al., investigated algorithm portfolios composed of
2-4 different evolutionary algorithms (e.g., CMA-ES, GA, DE
and PSO) [22]. Each algorithm was allocated one subpopula-
tion, and the control parameters for each constituent algorithm
was manually selected. These portfolios were evaluated exten-
sively on standard function optimization benchmarks.

While these previous papers on heterogeneous, island-
model EAs showed the potential of a distributed, heteroge-
neous model, in various settings, our work differs in two
respects: First, in contrast to previous work, where the control
parameters used for each subpopulation/island were manually
determined, RHIM selects control parameters for individual
subpopulations by randomly sampling a space of plausible
parameter settings. Second, in contrast to previous work which
focused on a fairly specific class of EA for a relatively small
number of islands (or combinations of EAs, as in [22]), this
paper presents a broad set of empirical evaluations on a
wide range of benchmark problems, including both function
optimization and combinatorial optimization problems, and
evaluates the applicability of RHIM to a variety of state-of-
the-art evolutionary algorithms, using up to 256 islands.

Bianzzini et al [23] proposed a parallel hyper-heuristic
where each island (processor) executes an iteration of some
heuristic (EA), and passes the result of executing heuristics
among the islands. Bianzzini et al [23] use a set of 8 EAs
(6 different configurations of differential evolution, a particle

swarm optimization, and a random search algorithm). If there
are more than 8 processors, some processors will be executing
duplicate EAs – this duplication is not a problem because
hyper-heuristics operate by very rapidly passing the output of
each heuristic as the input of another heuristic. They investigate
various strategies for dynamically reassigning the 8 candidate
heuristics to each processor. Similarly, Leon et al apply a dy-
namically reconfiguring, parallel hyper-heuristic to 2D packing
[24]. The RHIM is at the opposite end of the spectrum as
this line of work. Our focus is on an extremely simple, static,
randomized strategy. We statically assign a randomly generated
GA configuration to each processor, so there is greater diversity
in the algorithmic configurations (compared to [23], [24]), but
the configurations are not changed during the run. An empirical
comparison of these contrasting approaches is an interesting
avenue for future research.

The parameter-less GA is an approach to eliminating pa-
rameter tuning in GAs [25]. In this approach, Harik and Lobo
first “eliminate” some parameters by arguing (based on schema
theory) that selection rate and crossover rate should be set to
a constant setting for all problems, and turning off mutation
completely. The remaining, single parameter is population
size. They execute a race among multiple populations of
various sizes. Smaller populations are killed and replaced by
larger populations when it no longer seems worthwhile to
continue running the small population. Although this work
was implemented sequentially, the racing populations could
be implemented in parallel. The RHIM can be considered a
different type of “parameter-less”, parallel GA. While Harik
and Lobos fixed selection rate and crossover rates at particular
values, we sample from a range of reasonable values.

Numerous approaches to self-adaptive genetic EAs have
been proposed (c.f., [26], including adaptive methods for
some island-model EAs (c.f., [27]). However, most of these
approaches introduce meta-level control parameters which
themselves must be tuned for the adaptation to work well, so
they are not quite parameter-free. In contrast, we do not try to
actively automatically tune the system, but take a completely
passive approach: we rely on random assignment of parameters
to assign good control parameter settings to some of the
islands, and exploit the fact that this becomes increasingly
likely as the number of islands increases. While the bounds
on the ranges are meta-level parameters, the purpose of these
parameters is not to bias the parameter space in a particularly
favorable way – rather, the purpose is simply to rule out values
that are a priori believed to be extremely poor.

X. DISCUSSION AND CONCLUSIONS

This paper presented a large-scale, empirical evaluation
of the Random Heterogeneous Island Model, a method for
configuring island-model evolutionary algorithms by assigning
independently selected randomly parameter values to each
island [4]. While the previous work that introduced RHIM [4]
evaluated RHIM on only 3 benchmark functions and sorting
network generation problem, all on a simple, binary-coded
GA, this paper evaluates the RHIM on a much larger set of
benchmarks (13 function optimization benchmarks, 6 TSP and
7 QAP benchmarks), and also evaluates RHIM applied to a
broad range of modern EAs (differential evolution, real-coded
GA, adaptive DE, and problem-specific GAs for the TSP and



QAP). We have also shown that RHIM is a robust method for
various migration topologies and policies.

Not surprisingly, RHIM can not compete with a serious
attempt to tune the control parameters of a homogeneous
island-model EA for each benchmark problem (i.e., RHIM is
not competitive with BH-M). However, with a sufficiently large
number of islands, RHIM consistently performs better than a
weak attempt to tune the control parameters of a homogeneous
EA (i.e., RHIM outperforms MH-M in all settings for ≥ 128
islands), and RHIM with enough islands is also better than the
naive approach of tuning a multi-island EA by tuning a single-
island EA for each problem and replicating its parameters
on all of the islands (i.e., RHIM outperforms BH-1 in many
settings for ≥ 128 islands).

We re-emphasize that MH-M, BH-M, and BH-1 were tuned
for every single benchmark problem, for every experimental
setting (these are models for tuning parameters for each
problems and environment, not tuning for good average case
performance). The fact that RHIM, which randomly assign-
ments of parameter values independently to each island can
be competitive at all with any of these tuning methods is
remarkable.

The RHIM is not only robust. It is also trivial to implement,
and it is as parameter-free as possible – as explained in Section
II the only “parameters” are bounds on the ranges for the
randomly generated control parameter values, which were set
very broadly in our experiments.

Therefore, our results suggest that RHIM should be con-
sidered as the default method for setting control parameters in
an island-model EA, when there is insufficient time/resources
for careful parameter tuning. We have shown across many
benchmarks and settings that the RHIM is substantially better
than naive methods that practitioners commonly resort to when
tuning an island-model EA (single-island based tuning, or
tuning with insufficient resources).

We have focused so far on demonstrating that the sim-
plest possible implementation of RHIM is an effective, robust
approach to island-model EA configuration. There are many
directions for future work. One particularly interesting avenue
is the investigation of a more expressive approach to defining
how parameter values are sampled. So far, we have only
considered uniform sampling from a range of parameters.
Other natural sampling distributions (e.g., normal) should be
investigated. Also, while parameters have been generated com-
pletely independently, expressing natural/obvious constraints
on combinations of parameters (e.g., “don’t generate combi-
nations where the mutation rate and crossover rate are both
over 0.9”) could help prune completely unproductive parameter
combinations and further improve the robustness of RHIM.

REFERENCES

[1] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff, “Generalizing surrogate-
assisted evolutionary computation,” IEEE Tran. Evol. Comput., vol. 14,
no. 3, pp. 329 –355, 2010.

[2] L. F, L. C, and M. Z, Eds., Parameter setting in evolutionary algorithms,
ser. Studies in Computational Intelligence. Springer, 2007.

[3] E. Cant’u-Paz, “Parameter setting in parallel genetic algorithms,” in
Parameter setting in evolutionary algorithms, L. F, L. C, and M. Z,
Eds. Springer, 2007, pp. 259–276.

[4] Y. Gong and A. Fukunaga, “Distributed island-model genetic algorithms
using heterogeneous parameter settings,” in IEEE CEC, 2011, pp. 820–
827.

[5] R. Storn and K. Price, “Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, pp. 341–359, 1997.

[6] J. Zhang and A. Sanderson, “JADE: Adaptive differential evolution with
optional external archive,” IEEE Trans. Evol. Comput., vol. 13, no. 5,
pp. 945 –958, 2009.

[7] D. Wolpert and W. G. Macready, “No free lunch theorems for optimiza-
tion,” IEEE Trans. Evol. Comp., vol. 1, no. 1, pp. 67–82, 1997.

[8] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Tran. Evol. Comput., vol. 15, no. 1, pp. 4–31,
2011.

[9] R. Gämperle, S. D. Müller, and P. Koumoutsakos, “A parameter
study for differential evolution,” in WSEAS Int. Conf. on Advances in
Intelligent Systems, Fuzzy Systems, Evolutionary Computation, 2002,
pp. 293–298.

[10] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, “A
comparative study of differential evolution variants for global optimiza-
tion,” in GECCO, 2006, pp. 485–492.

[11] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, 1999.

[12] M. Lozano, F. Herrera, N. Krasnogor, and D. Molina, “Real-coded
memetic algorithms with crossover hill-climbing,” Evol. Comput.,
vol. 12, no. 3, pp. 273–302, Sep. 2004.

[13] K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolu-
tionary algorithm for real-parameter optimization,” Evolutionary Com-
putation, vol. 10, no. 4, pp. 371–395, Dec. 2002.

[14] M. R. Garey and D. S. Johnson, Computers and intractability. Freeman
San Francisco, CA, 1979, vol. 174.

[15] T. Starkweather, S. Mcdaniel, D. Whitley, K. Mathias, and D. Whitley,
“A comparison of genetic sequencing operators,” in Proc. Int. Conf. on
Genetic Algorithms. Morgan Kaufmann, 1991, pp. 69–76.

[16] P. Merz and B. Freisleben, “Fitness landscape analysis and memetic
algorithms for the quadratic assignment problem,” IEEE Trans. Evol.
Comput., vol. 4, no. 4, pp. 337–352, Nov. 2000.

[17] M. Miki, T. Hiroyasu, and K. Hatanaka, “A parallel genetic algorithm
with distributed environment scheme,” in Proc. IEEE Systems, Man,
and Cybernetics, 1999.

[18] M. Kaneko, M. Miki, and T. Hiroyasu, “A parallel genetic algorithm
with distributed environment scheme,” in PDPTA, 2000, pp. 695–700.

[19] F. Herrera and M. Lozano, “Gradual distributed real-coded genetic
algorithms,” IEEE Trans. Evol. Comput., vol. 4, no. 1, pp. 43–63, 2000.

[20] B. Dorronsoro and P. Bouvry, “Improving classical and decentralized
differential evolution with new mutation operator and population topolo-
gies,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 67–98, 2011.

[21] M. Weber, F. Neri, and V. Tirronen, “Distributed differential evolution
with explorative—exploitative population families,” Genetic Program-
ming and Evolvable Machines, vol. 10, no. 4, pp. 343–371, 2009.

[22] F. Peng, K. Tang, G. Chen, and X. Yao, “Population-based algorithm
portfolios for numerical optimization,” IEEE Trans. Evol. Comput.,
vol. 14, no. 5, pp. 782–800, Oct. 2010.

[23] M. Biazzini, B. Bánhelyi, A. Montresor, and M. Jelasity, “Distributed
hyper-heuristics for real parameter optimization,” in GECCO, 2009, pp.
1339–1346.

[24] C. León, G. Miranda, and C. Segura, “A memetic algorithm and a
parallel hyperheuristic island-based model for a 2D packing problem,”
in GECCO, 2009, pp. 1371–1378.

[25] G. R. Harik and F. G. Lobo, “A parameter-less genetic algorithm,” in
GECCO, 1999, pp. 258–265.

[26] S. Meyer-Nieberg and H.-G. Beyer, “Self-adaptation in evolutionary al-
gorithms,” in Parameter setting in evolutionary algorithms, ser. Studies
in Computational Intelligence, L. F, L. C, and M. Z, Eds. Springer,
2007, pp. 121–142.

[27] J. Tang, M.-H. Lim, and Y.-S. Ong, “Adaptation for parallel memetic
algorithm based on population entropy,” in GECCO, 2006, pp. 575–582.


