
To appear in Annals of Operations Research (Draft, October 2009)

A Branch-and-Bound Algorithm for Hard Multiple

Knapsack Problems

Alex S. Fukunaga

the date of receipt and acceptance should be inserted later

Abstract The multiple knapsack problem (MKP) is a classical combinatorial opti-

mization problem. A recent algorithm for some classes of the MKP is bin-completion,

a bin-oriented, branch-and-bound algorithm. In this paper, we propose path-symmetry

and path-dominance criteria for pruning nodes in the MKP branch-and-bound search

space. In addition, we integrate the “bound-and-bound” upper bound validation tech-

nique used in previous MKP solvers. We show experimentally that our new MKP

solver, which successfully integrates dominance based pruning, symmetry breaking,

and bound-and-bound, significantly outperforms previous solvers on some classes of

hard problem instances.

1 Introduction

Consider m containers (bins) with capacities c1, ..., cm, and a set of n items, where each

item has a weight w1, ..., wn and profit p1, ..., pn. Packing the items in the containers

to maximize the total profit of the items, such that the sum of the item weights in

each container does not exceed the container’s capacity, and each item is assigned to

at most one container is the 0-1 Multiple Knapsack Problem, or MKP.

For example, suppose we have two bins with capacities c1 = 10, c2 = 7, and four

items with weights 9,7,6,1 and profits 3,3,7,5. The optimal solution to this MKP in-

stance is to assign items 1 and 4 to bin 1, and item 3 to bin 2, giving us a total profit of

15. Thus, the MKP is a natural generalization of the classical 0-1 Knapsack Problem

to multiple containers.

Let the binary decision variable xij be 1 if item j is placed in container i, and 0

otherwise. Then the 0-1 MKP can be formulated as the integer program below, where

constraint 2 encodes the capacity constraint for each container, and constraint 3 ensures

that each item is assigned to at most one container.

Alex S. Fukunaga
Global Edge Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan E-mail: fuku-
naga@is.titech.ac.jp

2

maximize

m
X

i=1

n
X

j=1

pjxij (1)

subject to:
n

X

j=1

wjxij ≤ ci, i = 1, ..., m (2)

m
X

i=1

xij ≤ 1, j = 1, ..., n (3)

xij ∈ {0, 1} ∀i, j. (4)

The MKP has numerous applications, including task allocation among autonomous

agents, continuous double-call auctions (Kalagnanam, Davenport, and Lee, 2001), mul-

tiprocessor scheduling (Labbé, Laporte, and Martello, 2003), vehicle/container loading

(Eilon and Christofides, 1971), and the assignment of files to storage devices in order to

maximize the number of files stored in the fastest storage devices (Labbé et al., 2003).

A special case of the MKP where the profits of the items are equal to their weights,

i.e., pj = wj for all j is the Multiple Subset-Sum Problem (MSSP).

The MKP (including the special case of the MSSP) is strongly NP-complete.1

Thus, state-of-the-art algorithms for finding optimal solutions are based on branch-

and-bound. While this paper focuses on exact algorithms, there has also been work on

approximation algorithms (Chekuri and Khanna, 2000; Caprara, Kellerer, and Pfer-

chy, 2000; Caprara, Kellerer, and Pferschy, 2003), as well as heuristics for the MKP

(Martello and Toth, 1981b; Raidl, 1999; Fukunaga, 2008)

In previous work (Fukunaga and Korf, 2007), we investigated a branch-and-bound

algorithm called bin-completion, based on a bin-oriented branching structure and a

powerful dominance criterion. We showed that for problems where the ratio of items

to bins is relatively small (i.e., n/m < 4), bin-completion is a successful approach.

This paper extends the work on the bin-completion algorithm in several ways.

First, the search space explored by bin-completion has many symmetric and dominated

states. Previous work introduced some techniques for exploiting the symmetry and

demonstrated their utility2. In this paper, we further investigate methods for exploiting

symmetry and dominance in the MKP bin-completion algorithm, and propose path-

symmetry, a dynamic symmetry-detection approach for the MKP. Path-symmetry is

related to the general symmetry breaking via dominance detection (SBDD) approach

in the constraint programming literature (Fahle, Schamberger, and Sellmann, 2001;

Focacci and Milano, 2001). In addition, we further generalize upon path-symmetry

and combine it with the dominance criterion used by bin-completion to derive path-

dominance, a stronger, dominance-based pruning criterion.

Secondly, we integrate bin-completion with bound-and-bound, a technique which is

responsible for much of the power of previous branch-and-bound MKP solvers (Martello

and Toth, 1981a; Pisinger, 1999). Bound-and-bound seeks to prune nodes by heuristi-

cally seeking to validate the (optimistic) upper bound on the total profit at each search

1 In contrast, the single-container 0-1 Knapsack problem is weakly NP-complete, and can
be solved in pseudopolynomial time using dynamic programming.

2 In this paper, these previous methods, formerly called nogood pruning and nogood domi-
nance pruning are referred to as 2-swap-path-symmetry and 2-swap-path-dominance

3

node. We incorporated this technique into our extended bin-completion based MKP

solver.

The resulting new MKP solver is shown to significantly improve upon the previous

bin-completion MKP solver of (Fukunaga and Korf, 2007) on instances where the ratio

of items to bins is small, resulting in a new, state-of-the art solver for these problem

classes, and is also shown to be competitive with Pisinger’s Mulknap solver (Pisinger,

1999) (the previous state-of-the-art solver) for problems with high ratios of items to

bins.

The paper is organized as follows. We start by reviewing standard algorithms for

the MKP (Section 2), and identify classes of problems which pose challenges for these

algorithms. Next, Section 3 describes the bin-completion algorithm. Section 4 defines

the basic framework we use for symmetry detection and breaking, and reviews previous

algorithms for exploiting symmetry in the MKP. We then introduce new, generalized

symmetry and dominance-based pruning techniques which are more powerful than

the previous techniques. We discuss methods for combining various symmetry and

dominance-based pruning mechanisms. In Section 5, we experimentally evaluate various

combinations of symmetry and dominance-based pruning mechanisms, and we conclude

with a discussion of results and directions for future work.

2 Previous Algorithms for the MKP: Item-Oriented, Bound-and-Bound

There is a long line of research on exact, branch-and-bound algorithms for the MKP.

Early work by Ingargiola and Korsh (1975) proposed a reduction algorithm based

on dominance relationships between pairs of items, and presented a branch-and-bound

strategy that used this reduction procedure. In other early work, Hung and Fisk (1978)

proposed a branch-and-bound algorithm using the Lagrangian relaxation for the upper

bound.

The MTM algorithm of Martello and Toth (1981a) is an item-oriented branch-and-

bound algorithm (see Figure 2(a)). The items are ordered according to non-increasing

efficiency (ratio of profit to weight), so that the next item selected by the variable-

ordering heuristic for the item-oriented branch-and-bound is the item with highest

efficiency that was assigned to at least one container by a greedy bound-and-bound

procedure (see below). The branches assign the selected item to each of the containers,

in order of non-decreasing remaining capacity.

At each node, an upper bound is computed using a relaxation of the MKP, which

is obtained by combining all of the remaining m containers in the MKP into a single

container with aggregate capacity C =
Pm

i=1 ci, resulting in the single-container, 0-1

knapsack problem:

maximize
n

X

j=1

pjx
′

j (5)

subject to

n
X

j=1

wjx
′

j ≤ C, (6)

x′

j ∈ {0, 1}, j = 1, ..., n. (7)

where the variable x′

j represents whether item j has been assigned to the aggregated

bin. This surrogate relaxed MKP (SMKP) instance can be solved by applying any

4

algorithm for optimally solving the 0-1 Knapsack problem, and the optimal value of the

SMKP is an upper bound for the original MKP. Thus, this upper bound computation

is itself solving an embedded, weakly NP-complete (single-container) 0-1 Knapsack

problem instance as a subproblem.

The MTM algorithm introduced a powerful extension to branch-and-bound for the

MKP called bound-and-bound. In standard branch-and-bound, an upper bound U is

computed at each node in the search tree. If U ≤ L, L, where L is a lower bound,

e.g., the best (highest) objective function score found so far by branch-and-bound,

then exploring the node further is futile, so the node can be pruned. On the other

hand, if U > L, then standard branch-and-bound does not prune the node. Bound-

and-bound extends this by applying some heuristic technique to attempt to validate

the upper bound at each node: When U > L, bound-and-bound attempts to prove

that the upper bound U can be achieved somehow in the current subtree – if so, then

we have found the value of the optimal sub-solution under the current node and can

backtrack. Furthermore, in this case, the value of L is updated to U .

The MTM algorithm applies a greedy heuristic algorithm for the MKP, which

involves solving a series of m 0-1 Knapsack problems. First, container i = 1 is filled

optimally using any of the remaining items, and the items used to fill container i = 1

are removed. Then, container i = 2 is filled using the remaining items. This process is

iterated m times, at which point all containers are filled.

The Mulknap algorithm by Pisinger (1999) uses the same item-oriented branching

structure as MTM, applying the SMKP upper bound at each node, as well as a bound-

and-bound strategy. Mulknap differs from MTM in that it (1) uses a different validation

strategy for the bound-and-bound based on splitting the SMKP solution, (2) applies

item reduction at each node, and (3) applies capacity tightening at each node. Details

on the reduction procedure and capacity tightening can be found in (Pisinger, 1999).

Here, we focus on the improved bound-and-bound strategy.

At each node, Mulknap attempts to validate the SMKP upper bound by showing

that there exists a partition of the SMKP 0-1 Knapsack solution into the remaining

empty spaces in the m bins of the original MKP instance. This is done by solving a series

of m subset-sum problems which allocate the items from the SMKP solution to each

bin, minimizing the unused capacity in each bin (without exceeding capacity). If this

partition is successful then the SMKP upper bound can be achieved by partitioning the

SMKP solution into the remaining spaces in the bins, so we have validated the upper

bound possible under the current branch-and-bound node, and thus, we can backtrack.

2.1 Where are the hard MKP problem instances?

The bound-and-bound technique used by MTM and Mulknap can be extremely power-

ful. In fact, for many random MKP benchmarks with a relatively large ratio of items to

bins (n/m > 5), Mulknap’s bound-and-bound strategy can often validate the SMKP

upper bound at the root node of the search tree, which means that the instance is

solved at the root node without requiring any branch-and-bound search.

To observe how the difficulty of MKP problem instances varies with problem char-

acteristics, we consider the following, four standard classes of random problems from

the MKP literature (Martello and Toth, 1990; Pisinger, 1999):

– uncorrelated instances, where the profits pj and weights wj are uniformly dis-

tributed in [min, max].

5

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 10 20 30 40 50 60 70 80

 2 3 4 5 6 7 8 9 10

N
od

es
 s

ea
rc

he
d

n (# of items)

n/m (# of items / # of bins)

Uncorrelated
Weakly correlated

Strongly correlated
Subset sum

Fig. 1 Difficulty of problem instances as the ratio of items to knapsacks (n/m) varies. The
number of bins was fixed at m = 8, and n was varied from 16 to 80. Each data point represents
the mean over 100 instances solved with Mulknap, where each run had a time limit of 30 seconds.
For runs that timed out, the number of nodes generated within the time limit is counted.

– weakly correlated instances, where the wj are uniformly distributed in [min,max]

and the pj are randomly distributed in [wj−(max−min)/10, wj +(max−min)/10]

such that pj ≥ 1,

– strongly correlated instances, where the wj are uniformly distributed in [min,max]

and pj = wj + (max − min)/10, and

– multiple subset-sum instances, where the wj are uniformly distributed in [min, max]

and pj = wj .

In our experiments, min = 10, max = 1000. The first m − 1 bin capacities ci were

uniformly distributed in [0.4
Pn

j=1 wj/m, 0.6
Pn

j=1 wj/m] for 1 ≤ i < m. The last

capacity cm is chosen as cm = 0.5
Pn

j=1 wj −
Pm−1

i=1 ci to ensure that the sum of the

capacities is half of the total weight sum. Degenerate instances were discarded as in

Pisinger’s experiments (Pisinger, 1999).

For m = 8 knapsacks, we considered n (number of items) ranging from 16 to 80,

i.e., 2 ≤ n/m ≤ 10. For each value of n, we generated 100 instances, and ran Mulknap

on each instance with a 30-second time limit. Figure 1 shows the mean number of

nodes searched by Mulknap on these instances. For runs that timed out, we counted

the number of nodes generated within the time limit.

For all four classes of standard MKP benchmarks, problems with ratios of n/m

slightly greater than 2 are the hardest instances, and as n/m increases, the problems

become easier, requiring less search, and with sufficiently high values of n/m, these

instances require no search, i.e., the upper bound is immediately validated at the root

6

node by bound-and-bound. Similar results were obtained for lower precision (items in

the range [10,100]) and higher precision (items in the range [10,10000]) instances.

We also generated 1000 instances each of the uncorrelated, weakly-correlated,

strongly-correlated, and multiple subset-sum instances with 10 bins and 100 items,

where [min, max] = [1,1000]. Mulknap solved all 4000 instances at the root node (i.e.,

without any branching) in less than 0.01 seconds per instance. This further demon-

strates the relative “easiness” of problems with high n/m ratios for bound-and-bound

based MKP solvers.

Our approach to generating difficult instances by identifying a critical parameter

(n/m) for a simple uniform generator is analogous to the method of generating hard

uniform satisfiability instances using the clause to variable ratio (Mitchell, Selman,

and Levesque, 1992). However, there are other approaches to generating difficult in-

stances. First, we can generate large instances (with large number of items and/or bins)

which can not be solved in a reasonable amount of time simply because of their size,

although this is a general observation and does not yield much insight into MKP prob-

lem difficulty. Second, as with knapsack problems in general, increasing the numerical

precision of the instances (i.e., the number of significant digits in the representation

of item weights) increases MKP problem difficulty (Pisinger, 1999). As noted earlier,

changing the precision yields results similar to Figure 1, so the role of precision seems

to be distinct from that of n/m in determining problem difficulty. A third approach is

to develop artificial models specifically designed to generate hard instances. While the

standard benchmark sets used in the MKP as well as single-bin 0-1 Knapsack litera-

ture uses a simple, natural uniform, random model, Pisinger has investigated methods

designed specifically for generating hard, single bin, 0-1 Knapsack problem instances

(Pisinger, 2005); investigation of extensions of these models for the MKP is an area for

future work.

3 Bin-Completion Algorithm for the MKP

Bin-completion is a branch-and-bound algorithm for finding optimal solutions to multi-

container assignment problems including the MKP, bin packing, and bin covering prob-

lems (Fukunaga and Korf, 2007). We briefly describe this algorithm. For simplicity of

exposition, in the examples below, we assume (without loss of generality), multiple-

subsets sum problem (MSSP) instances, where ∀j, pj = wj . Thus, whenever possible in

the description below, we simply refer to an item by its weight (unless explicitly noted

otherwise).

A bin assignment Bi = (item1, ..., itemk) is a set of all of the items that are assigned

to a given bin i, 1 ≤ i ≤ m. Thus, a valid solution to a MKP instance consists of a

set of bin assignments, where each item appears in exactly one bin assignment. A bin

assignment is feasible with respect to a given bin j if the sum of its weights does not

exceed the capacity of the bin, ci. Otherwise, the bin assignment is infeasible. We say

that a bin assignment S is maximal with respect to bin i if S is feasible, and adding any

other remaining item would make it infeasible. The bin-completion algorithm searches

a tree where each node at depth d, 1 ≤ d ≤ m, represents a set of maximal, feasible

bin assignments. Figure 2(b) shows part of an example bin-completion search tree.

Figure 3 shows the bin-completion algorithm for the MKP, where each call to

search MKP corresponds to a node in the branch-and-bound search tree. At each node,

we first check whether we are at a leaf node (no more bins or items) and adjust the

7

(83)

(83)(42)

(83) (42,41)

(83)
(42,41) (40)

(83 12) (42 41) (40)

(83)(42 41 12)
(40)

(83)(42 41)
(40 12)

(83)(42 41)
(40)(12)

(83)(42)(41)

(83)(42)
(41,40)

...

(83)(42)
(41)(40)

...

(a) Partial, item-oriented branching structure. Each node corresponds to a decision about which bin
an item is assigned to. Items are considered in decreasing order of weight

2

(83,12,5)

(42,41,11)

(40)

(42,40,11) (41,40,11)

(83,11,5) ...

(b) Partial, bin-completion search tree. Each node represents a maximal, feasible bin
assignment Bin assignments shown with a strikethrough, e.g., (83,11,5), are pruned
because they are dominated according to the criterion in Proposition 1.

Fig. 2 Standard item-oriented search space vs. Bin-completion search space: Portions of the
search trees for a MKP instance with capacity 100 and items with weights {83,42,41,40,12,11,5}
(∀i, pi = wi).

lower bound (sumProfit) if a new, best-so-far solution is found (lines 2-3). Pisinger’s

R2 reduction procedure (1999) is applied in order to try to reduce the problem by

eliminating some items for consideration (line 4). If items are eliminated by reduction,

then we call search MKP on the reduced subproblem (lines 5-7). Then, an upper bound

for the remaining subproblem is computed using Martello and Toth’s SMKP bound,

and the node is fathomed if the upper bound plus the current profit can not exceed

the profit of the best solution so far (lines 8-10).

Next, lines 11-13 we attempt to prune the node and improve the lower bound using

bound-and-bound as described in Section 3.1.

At this point, bin-completion is ready to branch and recursively solve the remaining

subproblem. First choose bin selects the bin b with minimal remaining capacity (line

14). Then, in line 15, the generate undominated function generates the candidate

children of the current node, which are the set of all maximal, feasible assignments

for b which are not dominated by any other assignment according to a dominance

8

1 search MKP(bins, items, sumProfit)

2 if bins==∅ or items == ∅
3 if sumProfit > bestProfit then bestProfit = sumProfit; return

4 ri = reduce(bins,items) /* Pisinger’s R2 reduction */

5 if ri 6= ∅
6 search MKP(bins, items \ ri, sumProfit)

7 return

8 upperBound = compute upper bound(items,bins)

9 if (sumProfit + upperBound ≤ bestProfit

10 return /* upper-bound based pruning using SMKP bound */

11 if (validate upper bound(upperBound))

12 bestProfit = upperbound

13 return /* bound-and-bound */

14 bin = choose bin(bins)

15 undominatedAssignments = generate undominated(items,capacity(bin))

16 foreach A ∈ sort assignments(undominatedAssignments)

17 if not(symmetric(A))

18 assign A to bin

19 search MKP(bins \ bin, items \ A, sumProfit+
P

j∈A pj)

Fig. 3 Bin-completion-based algorithm for the MKP. The top-level call is
search MKP(bins,items,0), with bestProfit initialized to −∞.

criterion. Given two feasible bin assignments F1 and F2, F1 dominates F2 if the value

of the optimal solution which can be obtained by assigning F1 to a bin is no worse than

the value of the optimal solution that can be obtained by assigning F2 to the same bin.

Bin-completion eliminates feasible assignments which are dominated according to the

following MKP dominance criterion proposed in (Fukunaga and Korf, 2007), which is

based on the Martello-Toth dominance criterion for bin packing (Martello and Toth,

1990).

Proposition 1 (MKP Dominance Criterion) Let A and B be two assignments

that are feasible with respect to capacity c. A dominates B if B can be partitioned

into i subsets B1, ..., Bi such that each subset Bk is mapped one-to-one to (but not

necessarily onto) ak, an element of A, and for all k ≤ i, (1) the weight of ak is greater

than or equal to the sum of the item weights in Bk, and (2) the profit of item ak is

greater than or equal to the sum of the profits of the items in Bk.

For example, given a bin with capacity 10 and items 9,8,7,3,2, the undominated,

feasible bin assignments are (9),(8,2), and (7,3). Generating the undominated bin as-

signments according to this criterion requires solving some small bin packing instances,

but can be done using space linear in the number of remaining items. Details of this

procedure are in (Fukunaga and Korf, 2007).

At this point, we have a set of undominated bin assignments which are the children

of the current node in the branch-and-bound tree. These undominated bin assignments

are sorted in order of increasing cardinality, and ties are broken in order of decreasing

profit (line 16). For each of these children, we first attempt to prune the child with the

symmetry/dominance based pruning methods described in Section 4 (line 17). Finally,

if the child is not pruned, then we call search MKP recursively on the child.

In some instances, generate undominated can generate a very large number of un-

dominated bin assignments. In fact, for some instances, there can be thousands (or

more) undominated bin assignments. It is possible to incrementally generate and pro-

9

cess the undominated assignments in small batches, which allows us to avoid spending

too much time on a single node, at the cost of losing some of the benefits of the

value ordering (sort assignments). Details for this method, called hybrid incremental

branching, are in (Fukunaga and Korf, 2007).

3.1 Bound and Bound

We implemented Pisinger’s bound-and-bound mechanism into our bin-completion solver:

at each node, we attempt to validate the SMKP upper bound by partitioning the SMKP

solution into the remaining bins (recall that in bin-completion, at depth b, m − b bins

are empty). We use Pisinger’s Minknap 0-1 Knapsack solver code to solve the SMKP

instances. As in Pisinger’s Mulknap solver, this Minknap code is modified so that if

there are multiple optimal solutions to the SMKP instance, the one with the smallest

weight sum is returned, because this makes it more likely that the solution can be split

by the bound-and-bound subset sum solver.

4 Exploiting Symmetry and Dominance in the Bin-Completion Search

Tree

We now describe several techniques for detecting and pruning symmetries and addi-

tional dominated nodes in the bin-completion branch-and-bound search tree.

To describe these mechanisms, which are related to the general SBDD approach

(Fahle et al., 2001; Focacci and Milano, 2001), we first introduce some notation and

define the notion of a nogood, which is central to all of our the pruning methods

described in this section.

Let Bd denote a bin assignment which assigns the elements of set B to a bin at

depth d. Thus, (10, 8, 2)1 and (10, 7, 3)1 denote two possible bin assignments for a bin

at depth 1.

Definition 1 (Nogood) Let Xd be some node in the bin-completion search tree at

depth d. Let E1, ..., Ed−1 be ancestors of Xd at depths 1, ..., d − 1, respectively. For

each such ancestor Ei, we say that every sibling of Ei which is expanded prior to Ei

by the bin-completion search algorithm is a nogood with respect to Xd.

In Figure 4, (8, 2)1 is a nogood with respect to the descendants of (7, 4)1. Since

bin-completion is a depth-first branch-and-bound algorithm, a nogood denotes a bin

assignment (node) whose descendants have been exhaustively searched in the current

search tree. The union of all current nogoods is a concise description of the entire

portion of the search tree which has been searched so far. This is similar to the use of

the term “nogood” in (Focacci and Shaw, 2002).

4.1 Path-Symmetry

Consider the search tree shown in Figure 4. Assume that the capacities for bins 1-4 are

11,11,12, and 10, respectively. Assume that we have already exhaustively searched the

subtree under (8, 2)1, and we have generated the node (7, 4)1, (10)2, (8, 3)3, (6, 2, 2)4.

By rearranging the items in bins 1-4, we can obtain a new set of bin assignments:

10

2

(8, 2)1

...

(7, 4)1

(10)2

(8, 3)3

(6,2,2)4

Fig. 4 The bin assignment (6, 2, 2)4 can be pruned by Path-Symmetry. (c1 = 11, c2 = 11, c3 =
12, c4 = 10).

(8, 2)1, (7, 3)2, (10, 2)3, (6, 4)4. This is a symmetric rearrangement, as the optimal so-

lution under the first set of bin assignments is the same as the optimal solution under

the latter set of assignments. Thus, we can prune the node at (6, 2, 2)4.

More generally: Given a bin-completion search tree where we are considering a bin

assignment for depth d, we define the current path from depth g to depth d as the union

of bins g,g + 1,...,d. The current path items are the union of all items in the current

path. For example, in Figure 4, if we are at node (6, 2, 2)4, the current path from depth

1 to 4 is the set of bins 1, 2, 3, and 4, and the current path items are 7, 4, 10, 8, 3, 6, 2, 2.

Definition 2 (Path-Symmetry) Let Ng be a nogood with respect to a candidate

bin assignment Bd, and let P be the current path items from depth g to d. we say that

there is a path-symmetry with respect to nogood Ng if two conditions hold: (1) every

item in Ng is a member of P , and (2) it is possible to (a) assign the items from the

current path items corresponding to the items of Ng (Items(Ng) ⊂ P) to bin g , and

(b) assign the remaining items (P \ Items(Ng)) to bins g + 1, ..., d such that all bins

g, ..., d are feasible.

If there is a path-symmetry between Bd and some nogood Ng as defined above,

Bd can be pruned. The correctness follows directly from the definition of nogoods.

Checking the first condition of Definition 2 is straightforward. However, checking

the second condition efficiently is not as straightforward, because it is essentially the

decision version of a bin packing problem,3 where we attempt to pack the items in

P \ Items(Ng) into bins with capacities cg+1, ..., cd. We describe several approaches:

In the first approach, we try to directly solve this bin packing problem using a simple

backtracking algorithm (BT). The bin packing problem, like the MKP, is strongly NP-

complete, and in the worst case, BT will take time which is O(nm), where n is the

number of items and m is the number of bins. It is possible to avoid backtracking

and use a standard bin packing heuristic such as first-fit decreasing (FFD), which

has a polynomial complexity. Thus our second approach uses FFD to pack the items

P \ Items(Ng) into bins g + 1, ..., d. The drawback of heuristics such as FFD is that

it is not guaranteed to find a packing of the items into the bins even if one exists.

However the symmetry check is still admissible – path-symmetry using a FFD check

to test condition (2) may sometimes fail to prune a node that a BT check would have

pruned, but will never prune a node that a BT check will not prune.

Another way to approximate the full check for condition (2) for path-symmetry

is to limit the set of items that can be swapped among the bins. That is, instead of

3 In the decision version of bin packing, we are given m bins and n items, and the problem is
to determine whether all n items can be packed into m bins such that the capacity constraints
on all of the bins are not violated.

11

repacking all of the items P \ Items(Ng) into bins g + 1, ..., d, we can “lock” some of

the items into their current bins and only consider packing the unlocked items. We

consider a limited packing problem (as opposed to the full packing problem without

locked items) where we (a) assign the items from the current path items corresponding

to the items of Ng(Items(Ng) ⊂ P) to bin g, and (b) pack the items P \ Items(Ng)

into bins g + 1, ..., d, but in contrast to the full packing problem, we lock all of the

items in P \ Items(Ng) except for the items in bin g. In Figure 4, the unlocked items

would be the 7 and 4 from bin 1. The limited packing problem is to pack the 7 and

4 into three bins: bin #2 with remaining capacity 1 (the 10 is locked), bin #3 with

remaining capacity 9 (the 8 is moved to bin #1, the original capacity is c3 = 12, and

there is a 3 which is locked, so the remaining capacity is 12-3=9), and bin #4 with

remaining capacity 2 (one of items with weight 2 has moved to bin 1, but the remaining

6 and 2 are locked). In this case, the packing fails, so limited packing is insufficient,

but a full packing (where all current path items were unlocked) would have enabled

path-symmetry detection. The choice of BT vs. FFD, and the choice of full vs. limited

packing are orthogonal choices. Thus, full packing using BT will give us the full pruning

power of path-symmetry (albeit at highest cost per node), while limited packing using

FFD gives us a weaker (but cheaper) pruning test.

A more restricted version of this test was previously considered in (Fukunaga and

Korf, 2007): Given a bin assignment Bd for the bin at depth d, we can prune Bd if

there is a nogood Ng with respect to Bd such that (1) Bd includes all the items in Ng,

and (2) if we swap the items in Ng from Bd with the items that are currently assigned

to the bin at depth g, both resulting bin assignments are feasible. We call this strategy

2-swap-path-symmetry, because it only considers symmetries that can be detected by

swapping items between two particular bins.4

Thus, we have five methods for detecting variants of path-symmetry: (1) 2-swap-

path-symmetry, the restricted, 2-bin version of path symmetry, (2) path-symmetry

using full packing and backtracking (BT), (3) full packing and FFD, (4) limited pack-

ing + BT, (5) limited packing + FFD. Full packing and backtracking captures the

full pruning power of the path-symmetry criterion, while the other variants make var-

ious tradeoffs between pruning and per-node overhead. We present results using the 2

bin limited version (2-swap-path-symmetry), one approximation of full path-symmetry

(limited packing + FFD), and the full path-symmetry test (full packing + BT). We

do not present results using full packing+FFD and limited packing+BT because pre-

liminary tests showed that these were not particularly promising or interesting.

4.2 Path-Dominance

Path-dominance is a generalization of path-symmetry. Consider the search tree shown

in Figure 5 for an instance where the bin capacities for bins 1-3 are 11, 12, and 13,

respectively. Assume that we have already exhaustively searched the subtree under

(8, 2)1, and we have generated the current path in the search tree, (7, 4)1, (5, 6)2, (9, 2)3.

By rearranging the items in bins 1-3, we can obtain a new set of bin assignments:

(7, 2)1, (5, 6)2, (9, 4)3. The optimal solution under the first sequence of bin assignments

4 2-swap-path-symmetry was previously called “nogood pruning” in (Fukunaga and Korf,
2007); 2-swap-path-dominance was previously called “nogood dominance pruning” in (Fuku-
naga and Korf, 2007). They have been renamed in this paper for clarity.

12

2

(8, 2)1

...

(7, 4)1

(5, 6)2

(9,2)3

Fig. 5 The bin assignment (9, 2)3 can be pruned by Path-Dominance (c1 = 11, c2 = 12, c3 =
13)

must be the same as the optimal solution the latter sequence of assignments. Thus, we

can prune the node (9, 2)3, since (8, 2)1 dominates (7, 2)1. More generally:

Definition 3 (Path-Dominance) Let Ng be a nogood with respect to candidate

bin assignment Bd, and let P be the current path items from depth g to d. We say

that there is a path-dominance symmetry with respect to nogood Ng established at

depth g if there exists some s ⊂ P such two conditions hold: (1) s is dominated by

Ng according to the MKP dominance criterion and (2) it is possible to (a) assign s to

bin g, and (b) assign the remaining items (P \ s) to bins g + 1, ..., d such that all bins

g, ..., d are feasible.

If there is a path-dominance relationship between Bd and some nogood Ng as de-

fined above, Bd can be pruned (follows from the definition of nogoods and Proposition

1).

Our current implementation of path-dominance works as follows. We enumerate

subsets of the current path items such that each such subset s is dominated by Ng

and is maximal, i.e., there is no other item which can be packed into the Ng. For

each such s, we test whether condition (2) of the path-dominance symmetry definition

(3) is satisfied. If so, then a path-dominance has been detected, so the current node

can be pruned. The test for condition (2) is the same as the corresponding test for

path-symmetry in the previous section. Thus, the same four implementations of the

check are possible: (a) full packing with BT, (b) full packing with FFD, (c) limited

packing with BT, and (d) limited packing with FFD. In the worst case, this check is

executed for each subset s that satisfies condition (1) of Definition 3, so checking for

path-dominance can be quite expensive.

The following, highly restricted form of Path-Dominance was proposed by in earlier

work (Fukunaga and Korf, 2007): Given a bin assignment Bd for depth d, we can prune

Bd if there is a nogood Ng with respect to Bd such that (1) Ng dominates B according

to the MKP dominance criterion (Proposition 1), and (2) The items in Bd can be

swapped with the current items in bin g, such that the resulting bin assignments are

both feasible. In other words, this is a restricted Path-Dominance test where all bins

are frozen except for the bin at depth d. We call this strategy 2-swap-path-dominance.

Thus, as with path-symmetry, we have five methods for detecting variants of path-

symmetry: (1) 2-swap-path-dominance, (2) path-dominance using full packing and

backtracking (BT), (3) full packing and FFD, (4) limited packing + BT, (5) limited

packing + FFD. As with path-symmetry, we present results using the 2 bin limited

version (2-swap-path-dominance), one approximation of full path-dominance (limited

packing + FFD), and the full path-dominance test (full packing + BT).

13

4.3 Combining Pruning Methods

We have defined a spectrum of techniques for exploiting symmetry and dominance

above, ranging from the weakest, 2-swap-path-symmetry, to the strongest, full path-

dominance with BT. The check for 2-swap-path-symmetry is very fast compared to all

of the other pruning criteria. The check for 2-swap-path-dominance is very fast com-

pared to general (> 2-bin) path-dominance, but is much more expensive than 2-swap-

path-symmetry, and comparable to general path-symmetry. Path-symmetry checks are

significantly faster than path-dominance checks.

Path-dominance, using the full packing with backtracking implementation, clearly

subsumes all of the other criteria. For example, every node which can be pruned by full

path-symmetry will also be pruned by path-dominance (but not vice versa). However,

there is a trade-off between the amount of pruning enabled by a pruning method and

the amount of overhead incurred at each node.

To alleviate this trade-off, we combine the strategies by chaining a set of tests so

that the cheapest, least powerful method is applied first. If this prunes the node, then

the costs of applying the more powerful (but costly) pruning methods are not incurred.

However, if the node is not pruned, then we apply another, more powerful method,

and so on. There are 4 components of a chained pruning strategy for bin-completion,

executed in the following order: (1) 2-swap-path-symmetry pruning, (2) 2-swap-path-

dominance pruning, (3) path-symmetry pruning, (4) path-dominance pruning.

In addition, for path-symmetry and path-dominance, we can use either limited or

full packing, and either the backtracking (BT) or FFD test (see Section 4.1).

5 Experimental Results

We experimentally evaluated our bin-completion based MKP solvers, as well as Mulk-

nap. As described in Section 4.3, we can combine various symmetry and dominance-

based pruning methods by applying them in sequence. Table 1 shows the 12 con-

figurations we evaluated. For each configuration, Table 1 indicates the search space

searched, whether bound-and-bound was used, and the variant(s) of path-symmetry

and path-dominance used. For example, the configuration labeled 2D/PSFull+B is a bin-

completion variant with bound-and-bound. It first applies 2-swap-path-symmetry at

each node, and if the node is not pruned, then it applies 2-swap-path-dominance, then

it applies path-symmetry pruning with full packing and BT. Preliminary experiments

showed that 2-swap-path-symmetry is almost always helpful and incurs little overhead,

so all bin-completion configurations except BC and BC+BB apply 2-swap-path-symmetry

first.

All of our bin-completion algorithms were implemented in Common Lisp and com-

piled using the SBCL compiler version 1.0.22. These were compared against the Mulk-

nap C code downloaded from Pisinger’s web site compiled with gcc version 4.1.2 using

the -O3 optimization flag.

We evaluated the various solver configurations using the standard benchmark classes

of uncorrelated, weakly correlated, strongly correlated, and multiple subset-sum in-

stances, which are defined in Section 2.1. We used instances where the ratio of items

to bins (n/m) ranged from 2 to 10. As shown in Section 2.1, this is a class of problems

which is challenging for current MKP solvers.

14

search bound & 2-swap- 2-swap Path- Path-
space bound path-sym path-dom Symmetry Dominance

Mulknap item y - - - -
BC bin n n n n n

BC+B bin y n n n n
2S bin n y n n n

2S+B bin y y n n n
2D bin n y y n n

2D+B bin y y y n n
PS bin n y n Limited,FFD n

PS+B bin y y n Limited,FFD n
2D/PS+B bin y y y Limited,FFD n

2D/PSFull+B bin y y y Full,BT n
2D/PD+B bin y y y n Limited,FFD

2D/PDFull+B bin y y y n Full,BT

Table 1 Algorithm configurations evaluated experimentally. All of these are exact, branch-
and-bound algorithms.

The results are shown in Tables 2-4. Table 2 shows the impact of bound-and-bound

on bin-completion solvers, and Tables 3-4 compare various combinations of the pruning

techniques described in Section 4. All experiments were run on a 2.83 GHz Intel Xeon

E5440 (all of our programs use a single core). Each entry in the tables represent data

from 20 instances, and all configurations were run on the same instances), so a total

of 480 instances were used. The fail column indicates the number of instances (out of

20) that were not solved within the time limit (1 hour per instance). The time and

nodes show average time spent and nodes searched on the successful runs, excluding

the failed runs. Thus, in the experiments where timeouts occurred, the fail column is

the most significant result.

Overall, the PS+B configuration (bin completion with path-symmetry and bound-

and-bound) resulted in the best performance, achieving good performance compared

to both previous bin-completion based solvers from (Fukunaga and Korf, 2007) (i.e.,

BC, 2S, 2D), as well as Mulknap. In general, bin-completion based branching strategy is

significantly more effective than the previous, item-oriented branching strategy when

n/m is small, while the effect of successful bound-and-bound dominates for high values

of n/m. Pruning based on path-symmetry and path-dominance is most effective for

low n/m, and becomes less effective for high n/m.

5.1 Effectiveness of Bound-and-Bound and Comparison with Mulknap

Table 2 compares bin-completion solvers that use bound-and-bound at each node (BC+B,

2S+B, 2D+B) against configurations that are identical, except that bound-and-bound is

not used at all (BC, 2S, 2D). Bound-and-bound becomes more effective as n/m increases,

and per-node overhead of bound-and-bound decreases as n/m increases. For n/m =

2 (30-bin, 60-item instances), the overhead of bound-and-bound is sufficiently large

enough that there is some slowdown (less than 20%) in BC+B, 2S+B and 2D+B compared

to BC, 2S, and 2D, respectively. However, for larger values of n/m, the relative overhead

of bound-and-bound becomes less significant, and for n/m ≥ 5, bound-and-bound is

significantly enhancing the performance of the bin-completion variants.

All of the bin-completion solvers perform significantly better than Mulknap on

instances with n/m ≤ 4 on multiple subset-sum and strongly correlated instances, and

15

Strongly Correlated Instances (20 instances per set)
30 bins, 60 items 15 bins, 45 items 12 bins, 48 items

fail time nodes fail time nodes fail time nodes
Mulknap 20 - - 8 1447.6 15065191 1 387.7 4618913

BC 19 2469.3 12919995 7 1245.7 11001154 1 214.5 2107106
BC+B 19 2634.0 12919994 7 1282.9 11000327 1 217.5 2093867

2S 0 401.4 2892773 0 955.6 6654960 0 211.3 1851019
2S+B 0 434.7 2892773 0 851.8 5902141 0 215.5 1839183

2D 3 497.2 1631516 1 850.1 5199276 1 175.5 1024321
2D+B 3 522.3 1631514 1 878.0 5198555 1 175.5 1012139

PS 0 346.6 2223863 0 360.4 2267173 0 103.6 689012
PS+B 0 397.6 2223862 0 375.2 2266460 0 105.2 678203

15 bins, 75 items 10 bins, 60 items 10 bins, 100 items
fail time nodes fail time nodes fail time nodes

Mulknap 0 2.8 12831 0 0.5 5643 0 0.0 1
BC 2 673.2 2674564 1 644.1 3195946 20 - -

BC+B 0 89.5 187546 0 13.2 22702 0 0.0 1
2S 2 857.2 2664605 3 496.1 2005870 20 - -

2S+B 0 101.9 186907 0 14.5 22483 0 0.0 1
2D 4 608.4 1687894 3 548.4 1974650 20 - -

2D+B 0 113.8 184984 0 14.8 22482 0 0.0 1
PS 2 876.6 2642081 3 508.7 1979216 20 - -

PS+B 0 103.0 182546 0 14.2 21913 0 0.0 1
Uncorrelated Instances (20 instances per set)

30 bins, 60 items 15 bins, 45 items 12 bins, 48 items
fail time nodes fail time nodes fail time nodes

Mulknap 20 - - 17 18516 80830867 5 502.7 21399885
BC 20 - - 7 765.7 33450082 1 99.8 3834747

BC+B 20 - - 7 808.7 33443730 1 90.6 3560519
2S 6 1296.3 42891188 4 170.1 5878005 1 84.3 2178953

2S+B 8 1303.9 31030003 4 190.6 5876272 1 81.7 2012293
2D 5 698.1 11298785 4 283.9 4010069 1 227.9 1865977

2D+B 5 858.1 11298783 7 808.7 33443730 1 219.1 1718940
PS 0 270.5 4607686 3 60.1 1176904 0 216.7 3853390

PS+B 0 355.2 4607685 3 66.2 1174424 0 80.0 684550
15 bins, 75 items 10 bins, 60 items 10 bins, 100 items

fail time nodes fail time nodes fail time nodes
Mulknap 6 401.0 12462601 0 19.3 451517 0 0.0 1

BC 1 250.0 2927203 0 70.7 765242 20 - -
BC+B 1 10.3 178772 0 0.8 13294 0 0.0 1

2S 1 404.1 2804649 0 120.5 764348 20 - -
2S+B 1 16.7 158925 0 1.5 13209 0 0.0 1

2D 1 536.7 2761707 0 170.1 763175 20 - -
2D+B 1 27.7 153950 0 2.5 13183 0 0.0 1

PS 1 414.8 2258201 0 130.5 748291 20 - -
PS+B 1 17.2 93736 0 1.6 11732 0 0.0 1

Table 2 Impact of bound-and-bound on Strongly Correlated instances and Uncorrelated in-
stances, n/m ≤ 10. Item weights were in [10,1000]. The fail column indicates the # of instances
(out of 20) that were not solved within the time limit (1 hour/instance). The time and nodes

show average runtimes and nodes searched on the successful runs, excluding the failed runs.

on instances with n/m ≤ 5 for weakly correlated and uncorrelated instances. Mulknap

performs significantly better than bin-completion without bound-and-bound (BC, 2S,

2D) for problems with n/m > 5 . However, the addition of bound-and-bound, greatly

improves the performance of bin-completion for problems with high n/m. For 10 bins

and 100 items, all of the solvers that use bound-and-bound solved all 20 instances

at the root node of the branch-and-bound search tree (nodes=1). In principle, when

Mulknap can solve a problem at the root node without branching, the bin-completion

variants should also behave identically because they use the same bound-and-bound

procedure. Although not shown here, results are similar for n/m > 10.

16

For weakly correlated instances and uncorrelated instances, bin-completion with

bound-and-bound significantly outperforms Mulknap for 15 bins and 75 items, as well

as 10 bins and 60 items. On the other hand, for multiple subset-sum instances and

strongly correlated instances with 15 bins and 75 items, as well as 10 bins and 60

items, Mulknap outperforms the bin-completion solvers.

Although not shown here to avoid repetition, we also ran the same experiment

with multiple subset-sum instances and weakly correlated instances, with results very

similar to the strongly correlated and uncorrelated instances in Table 2, respectively.

Thus, it is clear that bound-and-bound significantly benefits bin-completion solvers.

For weakly correlated and uncorrelated instances, bin-completion solvers with bound-

and-bound consistently outperform Mulknap. For multiple subset-sum and strongly

correlated instances, bin-completion solvers with bound-and-bound are competitive

with Mulknap, except for instances where 5 ≤ n/m ≤ 6.

The value of integrating both bound-and-bound and the bin-completion based

branching structure can be seen in Table 2. For uncorrelated problems with 15 bins

and 75 items, as well as 10 bins and 60 items, the solvers which used both the bin-

completion search structure and bound-and-bound performed significantly better than

both Mulknap and the bin-completion configurations which did not incorporate bound-

and-bound. Thus, integrating both bin-completion and bound-and-bound resulted in

performance that could not have been achieved by either technique alone, and could

only be achieved with an integrated approach. Note that an alternative approach of

running both Mulknap and a bin-completion solver (without bound-and-bound) in

parallel with the same processor resource bounds would not have achieved the results

obtained by the integrated solver.

5.2 On the utility of path-dominance

Our conclusions about the utility of the path-dominance pruning criterion are mixed.

On one hand, 2-swap-path-dominance, the 2-bin, limited version of path-dominance

originally proposed in (Fukunaga and Korf, 2007), is clearly a useful pruning criterion,

as shown by the success of the 2D+B configurations compared to pure bin completion

(BC+B) and bin-completion with 2-swap-path-symmetrh (2S+B). Furthermore, 2D/PS+B,

which also incorporate 2-swap-path-dominance as one of the chained pruning rules

(Section 4.3), performs well overall, although not as well as the approximate path-

symmetry configuration PS+B. While 2D/PS+B consistently searches fewer nodes than

PS+B and is sometimes the best performer (e.g., multiple subset-sum instances with 30

bins and 60 items), it is usually slower due to the overhead incurred by the 2-swap-

path-dominance test. It might be possible to reduce this overhead in an improved

implementation.

On the other hand, the general path-dominance criterion seems to have limited

utility, as shown by the relatively poor performance of the 2D/PD+B and 2D/PDFull+B

configurations. Although full path-dominance (2D/PDFull+B) theoretically searches the

fewest nodes, we have not found any configuration using path-dominance (i.e., config-

urations of full/limited swapping, backtracking/FFD packing) which achieves good

performance compared to solvers relying on path-symmetry (e.g., PS+B). As shown

in Tables 3-4, the 2D/PD+B and 2D/PDFull+B configurations consistently performed

worse than PS+B. The 2D/PDFull+B configuration performs very poorly due to the

very large overhead of trying to detect all path-dominance relationships at every node.

17

Multiple Subset-Sum Instances (20 instances per set)
30 bins, 60 items 15 bins, 45 items 12 bins, 48 items

fail time nodes fail time nodes fail time nodes
Mulknap 20 - - 4 755.5 6495827 0 170.0 1823987

BC+B 16 603.8 6267003 0 410.7 2989727 0 3.1 24489
2S+B 0 434.6 2892773 0 99.7 664153 0 2.3 17098
2D+B 0 178.0 955952 0 99.9 604300 0 2.7 16733

2D/PS+B 0 75.3 343477 0 66.7 370007 0 2.3 12927
2D/PSFull+B 0 70.0 95958 0 120.2 204171 0 5.7 10254

PS+B 0 98.1 489028 0 62.0 385275 0 1.9 13002
2D/PD+B 1 245.9 131693 1 720.6 212200 0 138.3 10398

2D/PDFull+B 3 68.3 122824 3 1373.8 120305 1 102.8 4626
15 bins, 75 items 10 bins, 60 items 10 bins, 100 items

fail time nodes fail time nodes fail time nodes
Mulknap 0 0.0 2 0 0.0 1 0 0.0 1

BC+B 0 53.2 177017 0 21.5 80819 0 0.0 1
2S+B 0 65.4 175244 0 27.4 80690 0 0.0 1
2D+B 0 61.2 137884 0 26.5 67994 0 0.0 1

2D/PS+B 0 62.7 137871 0 26.9 67989 0 0.0 1
2D/PSFull+B 0 62.0 135805 0 26.1 64636 0 0.0 1

PS+B 0 66.5 175231 0 28.0 80413 0 0.0 1
2D/PD+B 0 68.5 123567 0 27.4 59130 0 0.0 1

2D/PDFull+B 0 68.3 122824 0 27.4 58394 0 0.0 1
Strongly Correlated Instances (20 instances per set)
30 bins, 60 items 15 bins, 45 items 12 bins, 48 items

fail time nodes fail time nodes fail time nodes
Mulknap 20 - - 8 1447.6 15065191 1 387.7 4618913

BC+B 19 2634.0 12919994 7 1282.9 11000327 1 217.5 2093867
2S+B 0 434.7 2892773 0 851.8 5902141 0 215.5 1839183
2D+B 3 522.3 1631514 1 878.0 5198555 1 175.5 1012139

2D/PS+B 0 326.7 1576233 0 418.5 2146195 0 194.5 671526
2D/PSFull+B 0 248.0 345732 0 598.3 987785 0 424.5 374087

PS+B 0 397.6 2223862 0 375.2 2266460 0 105.2 678203
2D/PD+B 3 333.0 159603 11 856.4 601797 13 505.7 27701

2D/PDFull+B 3 472.4 54100 11 1959.5 332864 13 486.5 22500
15 bins, 75 items 10 bins, 60 items 10 bins, 100 items

fail time nodes fail time nodes fail time nodes
Mulknap 0 2.8 12831 0 0.5 5643 0 0.0 1

BC+B 0 89.5 187546 0 13.2 22702 0 0.0 1
2S+B 0 101.9 186907 0 14.5 22483 0 0.0 1
2D+B 0 113.8 184984 0 14.8 22482 0 0.0 1

2D/PS+B 0 114.7 180802 0 14.5 21912 0 0.0 1
2D/PSFull+B 0 114.5 179972 0 14.4 21476 0 0.0 1

PS+B 0 103.0 182546 0 14.2 21913 0 0.0 1
2D/PD+B 3 360.7 86329 0 16.4 21725 0 0.0 1

2D/PDFull+B 3 355.1 85533 0 15.9 21277 0 0.0 1

Table 3 Evaluation on Multiple Subset-Sum instances and Strongly Correlated instances,
with n/m ≤ 10. Item weights were in [10,1000]. The fail column indicates the # of instances
(out of 20) that were not solved within the time limit (1 hour/instance). The time and nodes

show average runtimes and nodes searched on the successful runs, excluding the failed runs.

The 2D/PD+B configuration uses limited packing and FFD to approximate full path-

dominance, but also performs poorly compared to the solvers using path-symmetry.

Consider the results for multiple subset-sum instances with 12 bins and 48 items. The

path-symmetry configuration PS+B solves all 20 instances with 13002 nodes and 1.9

seconds per instance. The path-dominance configuration 2D/PD+B requires less search

(10398 nodes), but ran much slower (138.3 seconds per instance), and the full path-

dominance configuration 2D/PDFull+B only solved 19 out of 20 instances.

We performed additional experiments with smaller problem instances, where all

bin-completion based configurations were able to find a solution within the time limit.

18

Weakly Correlated Instances (20 instances per set)
30 bins, 60 items 15 bins, 45 items 12 bins, 48 items

fail time nodes fail time nodes fail time nodes
Mulknap 20 - - 20 - - 16 2170.3 51006850

BC+B 20 - - 10 1012.1 34180356 1 818.0 26318491
2S+B 1 459.2 9852571 7 377.0 9621344 0 515.1 12717274
2D+B 1 179.8 2363906 7 431.9 6840630 1 730.9 9692496

2D/PS+B 0 22.7 249981 2 659.1 8315905 0 397.8 3624160
2D/PSFull+B 0 39.2 81723 4 473.0 1267518 1 593.7 1628314

PS+B 0 24.8 355782 2 470.3 9406073 0 223.6 3851828
2D/PD+B 0 178.0 133774 9 803.8 1122117 13 919.1 861377

2D/PDFull+B 2 298.0 28508 11 1116.3 291104 10 1689.3 510621
15 bins, 75 items 10 bins, 60 items 10 bins, 100 items

fail time nodes fail time nodes fail time nodes
Mulknap 20 - - 1 361.6 7777204 0 0.0 1

BC+B 15 669.3 18355153 0 139.0 2249349 0 0.0 1
2S+B 15 771.2 14345268 0 200.8 2029246 0 0.0 1
2D+B 16 1158.4 9113924 0 376.9 1967813 0 0.0 1

2D/PS+B 15 1429.9 7157359 0 316.0 1086322 0 0.0 1
2D/PSFull+B 18 987.1 2262094 0 425.3 942505 0 0.0 1

PS+B 15 605.1 7269343 0 179.6 1102114 0 0.0 1
2D/PD+B 20 - - 13 1153.0 340866 0 0.0 1

2D/PDFull+B 20 - - 9 1355.4 336225 0 0.0 1
Uncorrelated Instances (20 instances per set)

30 bins, 60 items 15 bins, 45 items 12 bins, 48 items
fail time nodes fail time nodes fail time nodes

Mulknap 20 - - 17 18516 80830867 5 502.7 21399885
BC+B 20 - - 7 808.7 33443730 1 90.6 3560519
2S+B 8 1303.9 31030003 4 190.6 5876272 1 81.7 2012293
2D+B 5 858.1 11298783 7 808.7 33443730 1 219.1 1718940

2D/PS+B 0 402.7 2889109 3 113.3 1040818 0 223.0 654034
2D/PSFull+B 1 410.9 479972 3 113.1 331310 1 158.2 174423

PS+B 0 355.2 4607685 3 66.2 1174424 0 80.0 684550
2D/PD+B 3 321.2 356468 4 377.4 546827 5 767.7 253232

2D/PDFull+B 5 631.6 93894 4 222.5 223246 1 803.3 144663
15 bins, 75 items 10 bins, 60 items 10 bins, 100 items

fail time nodes fail time nodes fail time nodes
Mulknap 6 401.0 12462601 0 19.3 451517 0 0.0 1

BC+B 1 10.3 178772 0 0.8 13294 0 0.0 1
2S+B 1 16.7 158925 0 1.5 13209 0 0.0 1
2D+B 1 27.7 153950 0 2.5 13183 0 0.0 1

2D/PS+B 1 31.1 93456 0 2.6 11729 0 0.0 1
2D/PSFull+B 2 25.1 63926 0 3.0 11279 0 0.0 1

PS+B 1 17.2 93736 0 1.6 11732 0 0.0 1
2D/PD+B 2 212.5 66331 0 12.2 11636 0 0.0 1

2D/PDFull+B 2 143.4 63195 0 14.5 11202 0 0.0 1

Table 4 Evaluation on Weakly Correlated instances and Uncorrelated instances, with n/m ≤
10. Item weights were in [10,1000]. The fail column indicates the number of instances (out of
20) that were not solved within the time limit (1 hour/instance). The time and nodes show
average runtimes and nodes searched on the successful runs, excluding the failed runs.

For uncorrelated instances with 10 bins, 30 items, BC solves all instances in an average of

9.13 seconds and 1,662,504 nodes. In comparison, the 2-swap-path-dominance configu-

ration 2D requires 0.57 seconds and 47,193 nodes, and the path-dominance configuration

PS+B requires 0.25 seconds and 9,728 nodes. Thus, 2D and PS+B are searching 2-3 orders

of magnitudes fewer nodes than BC, respectively. Finally, the full path-dominance con-

figuration 2D/PDFull+B, solves all of these instances in 0.78 seconds and 5031 nodes.

Thus, for these instances, exploiting the most powerful dominance criterion yields a

factor of 2 reduction in nodes searched for these instances compared to PS+B, but the

additional cost per node results in a factor of 3 slowdown compared to PS+B.

19

5.3 Approximate vs. full pruning for path-symmetry and path-dominance

In Sections 4.1-4.2, we described 5 variants of both path-symmetry and path-dominance,

ranging from limited versions which only consider two bins (2-swap-path-symmetry and

2-swap-path-dominance), to the full implementation of the pruning criteria, using full

packing and backtracking (BT) at each node, as well as approximations which consid-

ered a limited subset of the items in each bin and a heuristic packing algorithm (FFD)

at each node to detect path-symmetry and path-dominance. All of these methods still

result in an exact algorithm for the MKP, although the approximate and 2-bin vari-

ants can miss opportunities to fathom nodes. The relatively poor performance of the

bin-completion configurations which used full path-symmetry (2D/PSFull+B) and full

path-dominance checks (2D/PDFull+B) compared to configurations which used approx-

imate checks (2D/PS+B and 2D/PD+B, respectively) show that using limited packing and

FFD to approximate these checks yields a favorable tradeoff in pruning vs. per-node

overhead.

5.4 Comparison with Previous Bin-Completion Solvers

Overall, the combination of path-symmetry and bound-and-bound techniques (PS+B)

significantly reduced the size of the branch-and-bound tree compared to bin-completion

with 2-swap-path-dominance 2D, the previous state of the art algorithm for MKP prob-

lems with low n/m ratios (Fukunaga and Korf, 2007). Tables 3-4 show that exploiting

symmetry and dominance is a very effective technique for hard MKP instances with

low n/m ratio. Furthermore, Table 2 shows that integrating bound-and-bound sig-

nificantly improves performance on instances with higher n/m ratios, while modestly

penalizing performance on instances with lower n/m ratios. Thus, the PS+B configura-

tion, which successfully integrates bin-completion, path-symmetry based pruning, and

bound-and-bound technique, is a new, state-of-the-art algorithm for instances for low

n/m ratios.

6 Related Work

Path-symmetry and path-dominance are closely related to generic, symmetry pruning

techniques in constraint programming, such as the symmetry breaking via dominance

detection (SBDD) approach (Fahle et al., 2001; Focacci and Milano, 2001), which seeks

to prune partial solutions by using a symmetry function to map the current search node

to one which has previously been fathomed (exhaustively searched). The symmetries

detected by path-symmetry are based on swapping of items among bins in a candidate

solution, where the swaps are constrained so that bin capacities are not violated. This

does not directly correspond to the standard symmetries in constraint programming

(e.g., variable / value symmetries). Thus, although path-symmetry is related to the

generic SBDD approach, it is not clear how other approaches to symmetry detection

from the constraint programming literature can be applied to the MKP. This remains

an area for future work.

Our work is also similar to the pruning technique proposed by Focacci and Shaw

(2002) for constraint programming, which was applied to the TSP with time windows.

Both methods attempt to prune the search by proving that the current node at depth j,

20

which represents a partial j-variable (bin) solution5) x, is dominated by some previously

explored i-variable (bin) partial solution (nogood bin assignment) q, where i < j.

The main difference between our method and Focacci and Shaw’s method is the

approach used to test for dominance. Focacci and Shaw’s method extends q to a j-

variable partial solution q′ which dominates x. They apply a local search procedure to

find the extension q′. In contrast, our methods start with a partial, j-bin solution x and

try to transform it to a partial solution x′ such that x̄′

i, the subset of x′ including the

first i bins, is dominated by the i-bin partial solution q. We do this by transforming (via

item swaps) the contents of bins i, i + 1, ..., j in x to derive a feasible partial solution

x′ such that x̄′

i is dominated by q.

Another, related technique for dominance-based pruning called local dominance

(LD) was originally proposed in (Fischetti and Toth, 1988) for the MKP, and gen-

eralized for mixed integer linear programming in (Fischetti and Salvagnin, 2008). In

the LD approach, partial assignment α is pruned if it can be shown if there exists

some other partial solution involving the variables in α which dominates α. Unlike

our method and Focacci and Shaw’s method, the LD approach does not necessarily

require the identification of a previously explored partial solution which dominates α

– it is sufficient to identify some partial solution β (previously explored or not) which

dominates α. In (Fischetti and Toth, 1988), heuristics are used to find β, while in (Fis-

chetti and Salvagnin, 2008), a small MILP instance is solved to seek β. In addition the

LD check in (Fischetti and Salvagnin, 2008) also generates nogoods to accelerate the

dominance check and speed up the search. Fischetti and Toth’s MKP solver (1988) is

an item-based branch-and-bound solver similar to the MTM algorithm (Martello and

Toth, 1981a). Their pruning mechanisms “H3” and “H4” seeks to identify a single item

assigned to a bin in the current partial assignment which can be replaced by another,

“better” item – indicating that the current partial assignment is dominated and can be

pruned. Although the specific pruning criteria used in (Fischetti and Toth, 1988) (i.e.,

H3, H4) are subsumed by the bin-completion MKP Dominance Criterion (Proposition

1), the general approach of LD pruning can be applied to a bin-completion search

space, and is an area for future work.

7 Conclusions

This paper presented an algorithm for the multiple knapsack problem which success-

fully extends the bin-completion algorithm of (Fukunaga and Korf, 2007). We pro-

posed two new, structural symmetry and dominance-based pruning methods (path-

symmetry and path-dominance) which are generalizations of previously studied strate-

gies (2-swap-path-symmetry and 2-swap-path-dominance). We showed that integrating

path-symmetry resulted in a new solver which significantly outperformed the previous

2-swap-path-dominance based bin-completion solver reported in (Fukunaga and Korf,

2007). We further showed that integrating bound-and-bound (Pisinger, 1999) could

significantly improve the performance on problems with higher n/m ratios. The result-

ing, integrated solver (2D/PS+B) is competitive with Mulknap on problems with high

n/m ratio, and outperforms the previous state of the art for problems with low n/m

ratios. We showed that there are problems for which the integration of these techniques

5 Our analogues of CP variables and values are bins and bin assignments, respectively.

21

clearly resulted in better performance than either bound-and-bound or bin-completion

alone.

There are several directions for future work. Although path-dominance is our most

powerful symmetry relation and prunes the most nodes, the current implementation

is not competitive with path-symmetry due to the large overhead incurred at each

node. We are currently investigating improved implementations and approximate de-

tection strategies to make path-dominance more viable. Finally, the symmetry and

path-dominance detection techniques described in this paper are not limited to the

MKP. For example, it is straightforward to apply the symmetry techniques to improve

the search efficiency of any of the bin-completion based solvers for bin packing, bin

covering, and min-cost covering problems described in (Fukunaga and Korf, 2007).

Acknowledgements This work was supported by the Japan MEXT program, “Promotion
of Env. Improvement for Independence of Young Researchers”, the JSPS Compview GCOE,
and a JSPS Grant-in-Aid for Young Scientists 20700131. Thanks to David Pisinger for making
his Mulknap and Minknap code publicly available. Thanks to Rich Korf for helpful discussions
about this work. Thanks to the anonymous reviewers for helpful comments.

References

Caprara, A., Kellerer, H., and Pferchy, U. (2000). A PTAS for the multiple-subset sum

problem with different knapsack capacities. Information Processing Letters, 73,

111–118.

Caprara, A., Kellerer, H., and Pferschy, U. (2003). A 3/4-approximation algorithm for

multiple subset sum. Journal of Heuristics, 9, 99–111.

Chekuri, C. and Khanna, S. (2000). A ptas for the multiple knapsack problem. In

Proceedings of the 11th annual ACM-SIAM Symposium on Discrete Algorithms,

pp. 213–222.

Eilon, S. and Christofides, N. (1971). The loading problem. Management Science,

17 (5), 259–268.

Fahle, T., Schamberger, S., and Sellmann, M. (2001). Symmetry breaking. In Proceed-

ings of the International Conference on Constraint Programming, pp. 93–107.

Fischetti, M. and Salvagnin, D. (2008). Pruning moves. Technical Report.

Fischetti, M. and Toth, P. (1988). A new dominance procedure for combinatorial

optimization problems. Operations Research Letters, 7 (4), 181–186.

Focacci, F. and Milano, M. (2001). Global cut framework for removing symmetries.

In Proceedings of the International Conference on Constraint Programming, pp.

77–92.

Focacci, F. and Shaw, P. (2002). Pruning sub-optimal search branches using local

search. In Proc. Fourth International Workshop on Integration of AI and OR

Techniques in Constraing Programming for Combinatorial Optimisation Prob-

lems (CP-AI-OR), pp. 181–189.

Fukunaga, A. (2008). A new grouping genetic algorithm for the multiple knapsack

problem. In Proc. IEEE Congress on Evolutionary Computation, pp. 2225–2232.

Fukunaga, A. and Korf, R. (2007). Bin-completion algorithms for multicontainer pack-

ing, knapsack, and covering problems. Journal of Artificial Intelligence Research,

28, 393–429.

Hung, M. and Fisk, J. (1978). An algorithm for the 0-1 multiple knapsack problem.

Naval Research Logistics Quarterly, 24, 571–579.

22

Ingargiola, G. and Korsh, J. (1975). An algorithm for the solution of 0-1 loading

problems. Operations Research, 23 (6), 1110–1119.

Kalagnanam, J., Davenport, A., and Lee, H. (2001). Computational aspects of clear-

ing continuous call double auctions with assignment constraints and indivisible

demand. Electronic Commerce Research, 1, 221–238.

Labbé, M., Laporte, G., and Martello, S. (2003). Upper bounds and algorithms for

the maximum cardinality bin packing problem. European Journal of Operational

Research, 149, 490–498.

Martello, S. and Toth, P. (1981a). A bound and bound algorithm for the zero-one

multiple knapsack problem. Discrete Applied Mathematics, 3, 275–288.

Martello, S. and Toth, P. (1981b). Heuristic algorithms for the multiple knapsack

problem. Computing, 27, 93–112.

Martello, S. and Toth, P. (1990). Knapsack problems: algorithms and computer imple-

mentations. John Wiley & Sons.

Mitchell, D., Selman, B., and Levesque, H. (1992). Hard and easy distributions of SAT

problems. In Proceedings of AAAI, pp. 459–65.

Pisinger, D. (1999). An exact algorithm for large multiple knapsack problems. European

Journal of Operational Research, 114, 528–541.

Pisinger, D. (2005). Where are the hard knapsack problems?. Computers and Opera-

tions Research, 32, 2271–2284.

Raidl, G. (1999). The multiple container packing problem: A genetic algorithm ap-

proach with weighted codings. ACM SIGAPP Applied Computing Review, 22–31.

